Timezone: »

 
Poster
Efficient Second-Order Online Kernel Learning with Adaptive Embedding
Daniele Calandriello · Alessandro Lazaric · Michal Valko

Wed Dec 06 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #50
Online kernel learning (OKL) is a flexible framework to approach prediction problems, since the large approximation space provided by reproducing kernel Hilbert spaces can contain an accurate function for the problem. Nonetheless, optimizing over this space is computationally expensive. Not only first order methods accumulate $\O(\sqrt{T})$ more loss than the optimal function, but the curse of kernelization results in a $\O(t)$ per step complexity. Second-order methods get closer to the optimum much faster, suffering only $\O(\log(T))$ regret, but second-order updates are even more expensive, with a $\O(t^2)$ per-step cost. Existing approximate OKL methods try to reduce this complexity either by limiting the Support Vectors (SV) introduced in the predictor, or by avoiding the kernelization process altogether using embedding. Nonetheless, as long as the size of the approximation space or the number of SV does not grow over time, an adversary can always exploit the approximation process. In this paper, we propose PROS-N-KONS, a method that combines Nystrom sketching to project the input point in a small, accurate embedded space, and performs efficient second-order updates in this space. The embedded space is continuously updated to guarantee that the embedding remains accurate, and we show that the per-step cost only grows with the effective dimension of the problem and not with $T$. Moreover, the second-order updated allows us to achieve the logarithmic regret. We empirically compare our algorithm on recent large-scales benchmarks and show it performs favorably.

Author Information

Daniele Calandriello (INRIA Lille - Nord Europe)
Alessandro Lazaric (Facebook Artificial Intelligence Research)
Michal Valko (DeepMind Paris and Inria Lille - Nord Europe)
Michal Valko

Michal is a machine learning scientist in DeepMind Paris, tenured researcher at Inria, and the lecturer of the master course Graphs in Machine Learning at l'ENS Paris-Saclay. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimizing the data that humans need to spend inspecting, classifying, or “tuning” the algorithms. That is why he is working on methods and settings that are able to deal with minimal feedback, such as deep reinforcement learning, bandit algorithms, or self-supervised learning. Michal is actively working on represenation learning and building worlds models. He is also working on deep (reinforcement) learning algorithm that have some theoretical underpinning. He has also worked on sequential algorithms with structured decisions where exploiting the structure leads to provably faster learning. He received his Ph.D. in 2011 from the University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos before taking a permanent position at Inria in 2012.

More from the Same Authors