Timezone: »
Poster
Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls
Zeyuan Allen-Zhu · Elad Hazan · Wei Hu · Yuanzhi Li
We propose a rank-k variant of the classical Frank-Wolfe algorithm to solve convex optimization over a trace-norm ball. Our algorithm replaces the top singular-vector computation (1-SVD) in Frank-Wolfe with a top-k singular-vector computation (k-SVD), which can be done by repeatedly applying 1-SVD k times. Alternatively, our algorithm can be viewed as a rank-k restricted version of projected gradient descent. We show that our algorithm has a linear convergence rate when the objective function is smooth and strongly convex, and the optimal solution has rank at most k. This improves the convergence rate and the total time complexity of the Frank-Wolfe method and its variants.
Author Information
Zeyuan Allen-Zhu (Microsoft Research)
Elad Hazan (Princeton University)
Wei Hu (Princeton University)
Yuanzhi Li (Princeton University)
Related Events (a corresponding poster, oral, or spotlight)
-
2017 Spotlight: Linear Convergence of a Frank-Wolfe Type Algorithm over Trace-Norm Balls »
Tue. Dec 5th 07:45 -- 07:50 PM Room Hall C
More from the Same Authors
-
2022 : Are Neurons Actually Collapsed? On the Fine-Grained Structure in Neural Representations »
Yongyi Yang · Jacob Steinhardt · Wei Hu -
2021 Poster: Online Control of Unknown Time-Varying Dynamical Systems »
Edgar Minasyan · Paula Gradu · Max Simchowitz · Elad Hazan -
2021 Poster: Multiclass Boosting and the Cost of Weak Learning »
Nataly Brukhim · Elad Hazan · Shay Moran · Indraneel Mukherjee · Robert Schapire -
2020 Poster: Geometric Exploration for Online Control »
Orestis Plevrakis · Elad Hazan -
2020 Poster: The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks »
Wei Hu · Lechao Xiao · Ben Adlam · Jeffrey Pennington -
2020 Spotlight: The Surprising Simplicity of the Early-Time Learning Dynamics of Neural Networks »
Wei Hu · Lechao Xiao · Ben Adlam · Jeffrey Pennington -
2020 Poster: Non-Stochastic Control with Bandit Feedback »
Paula Gradu · John Hallman · Elad Hazan -
2020 Poster: Online Agnostic Boosting via Regret Minimization »
Nataly Brukhim · Xinyi Chen · Elad Hazan · Shay Moran -
2019 : Logarithmic Regret for Online Control »
Naman Agarwal · Elad Hazan · Karan Singh -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Private Learning Implies Online Learning: An Efficient Reduction »
Alon Gonen · Elad Hazan · Shay Moran -
2019 Spotlight: Private Learning Implies Online Learning: An Efficient Reduction »
Alon Gonen · Elad Hazan · Shay Moran -
2019 Poster: On the Convergence Rate of Training Recurrent Neural Networks »
Zeyuan Allen-Zhu · Yuanzhi Li · Zhao Song -
2019 Poster: Explaining Landscape Connectivity of Low-cost Solutions for Multilayer Nets »
Rohith Kuditipudi · Xiang Wang · Holden Lee · Yi Zhang · Zhiyuan Li · Wei Hu · Rong Ge · Sanjeev Arora -
2019 Poster: Implicit Regularization in Deep Matrix Factorization »
Sanjeev Arora · Nadav Cohen · Wei Hu · Yuping Luo -
2019 Spotlight: Implicit Regularization in Deep Matrix Factorization »
Sanjeev Arora · Nadav Cohen · Wei Hu · Yuping Luo -
2019 Poster: What Can ResNet Learn Efficiently, Going Beyond Kernels? »
Zeyuan Allen-Zhu · Yuanzhi Li -
2019 Poster: Learning and Generalization in Overparameterized Neural Networks, Going Beyond Two Layers »
Zeyuan Allen-Zhu · Yuanzhi Li · Yingyu Liang -
2019 Poster: Logarithmic Regret for Online Control »
Naman Agarwal · Elad Hazan · Karan Singh -
2019 Poster: Can SGD Learn Recurrent Neural Networks with Provable Generalization? »
Zeyuan Allen-Zhu · Yuanzhi Li -
2019 Poster: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang -
2019 Spotlight: On Exact Computation with an Infinitely Wide Neural Net »
Sanjeev Arora · Simon Du · Wei Hu · Zhiyuan Li · Russ Salakhutdinov · Ruosong Wang -
2019 Oral: Logarithmic Regret for Online Control »
Naman Agarwal · Elad Hazan · Karan Singh -
2018 Poster: How To Make the Gradients Small Stochastically: Even Faster Convex and Nonconvex SGD »
Zeyuan Allen-Zhu -
2018 Poster: Online Improper Learning with an Approximation Oracle »
Elad Hazan · Wei Hu · Yuanzhi Li · Zhiyuan Li -
2018 Poster: Byzantine Stochastic Gradient Descent »
Dan Alistarh · Zeyuan Allen-Zhu · Jerry Li -
2018 Poster: Online Learning of Quantum States »
Scott Aaronson · Xinyi Chen · Elad Hazan · Satyen Kale · Ashwin Nayak -
2018 Poster: Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced »
Simon Du · Wei Hu · Jason Lee -
2018 Poster: Natasha 2: Faster Non-Convex Optimization Than SGD »
Zeyuan Allen-Zhu -
2018 Poster: NEON2: Finding Local Minima via First-Order Oracles »
Zeyuan Allen-Zhu · Yuanzhi Li -
2018 Spotlight: Natasha 2: Faster Non-Convex Optimization Than SGD »
Zeyuan Allen-Zhu -
2018 Poster: Is Q-Learning Provably Efficient? »
Chi Jin · Zeyuan Allen-Zhu · Sebastien Bubeck · Michael Jordan -
2018 Poster: The Lingering of Gradients: How to Reuse Gradients Over Time »
Zeyuan Allen-Zhu · David Simchi-Levi · Xinshang Wang -
2018 Poster: Spectral Filtering for General Linear Dynamical Systems »
Elad Hazan · Holden Lee · Karan Singh · Cyril Zhang · Yi Zhang -
2018 Oral: Spectral Filtering for General Linear Dynamical Systems »
Elad Hazan · Holden Lee · Karan Singh · Cyril Zhang · Yi Zhang -
2017 Poster: Convergence Analysis of Two-layer Neural Networks with ReLU Activation »
Yuanzhi Li · Yang Yuan -
2017 Poster: Learning Linear Dynamical Systems via Spectral Filtering »
Elad Hazan · Karan Singh · Cyril Zhang -
2017 Spotlight: Online Learning of Linear Dynamical Systems »
Elad Hazan · Karan Singh · Cyril Zhang -
2016 Poster: Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters »
Zeyuan Allen-Zhu · Yang Yuan · Karthik Sridharan -
2016 Poster: Approximate maximum entropy principles via Goemans-Williamson with applications to provable variational methods »
Andrej Risteski · Yuanzhi Li -
2016 Poster: Recovery Guarantee of Non-negative Matrix Factorization via Alternating Updates »
Yuanzhi Li · Yingyu Liang · Andrej Risteski -
2016 Poster: Optimal Black-Box Reductions Between Optimization Objectives »
Zeyuan Allen-Zhu · Elad Hazan -
2016 Poster: Combinatorial Multi-Armed Bandit with General Reward Functions »
Wei Chen · Wei Hu · Fu Li · Jian Li · Yu Liu · Pinyan Lu -
2016 Poster: Even Faster SVD Decomposition Yet Without Agonizing Pain »
Zeyuan Allen-Zhu · Yuanzhi Li -
2016 Poster: A Non-generative Framework and Convex Relaxations for Unsupervised Learning »
Elad Hazan · Tengyu Ma -
2016 Poster: Algorithms and matching lower bounds for approximately-convex optimization »
Andrej Risteski · Yuanzhi Li -
2016 Poster: The Limits of Learning with Missing Data »
Brian Bullins · Elad Hazan · Tomer Koren -
2015 Poster: Online Learning for Adversaries with Memory: Price of Past Mistakes »
Oren Anava · Elad Hazan · Shie Mannor -
2015 Poster: Beyond Convexity: Stochastic Quasi-Convex Optimization »
Elad Hazan · Kfir Y. Levy · Shai Shalev-Shwartz -
2015 Poster: Online Gradient Boosting »
Alina Beygelzimer · Elad Hazan · Satyen Kale · Haipeng Luo -
2009 Poster: On Stochastic and Worst-case Models for Investing »
Elad Hazan · Satyen Kale -
2009 Oral: On Stochastic and Worst-case Models for Investing »
Elad Hazan · Satyen Kale -
2009 Poster: An Efficient Interior-Point Method for Minimum-Regret Learning in Online Convex Optimization »
Elad Hazan · Nimrod Megiddo -
2009 Spotlight: An Efficient Interior-Point Method for Minimum-Regret Learning in Online Convex Optimization »
Elad Hazan · Nimrod Megiddo -
2009 Poster: Beyond Convexity: Online Submodular Minimization »
Elad Hazan · Satyen Kale -
2007 Oral: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Adaptive Online Gradient Descent »
Peter Bartlett · Elad Hazan · Sasha Rakhlin -
2007 Poster: Computational Equivalence of Fixed Points and No Regret Algorithms, and Convergence to Equilibria »
Elad Hazan · Satyen Kale