`

Timezone: »

 
Poster
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
Martin Heusel · Hubert Ramsauer · Tom Unterthiner · Bernhard Nessler · Sepp Hochreiter

Wed Dec 06 06:30 PM -- 10:30 PM (PST) @ Pacific Ballroom #108 #None

Generative Adversarial Networks (GANs) excel at creating realistic images with complex models for which maximum likelihood is infeasible. However, the convergence of GAN training has still not been proved. We propose a two time-scale update rule (TTUR) for training GANs with stochastic gradient descent on arbitrary GAN loss functions. TTUR has an individual learning rate for both the discriminator and the generator. Using the theory of stochastic approximation, we prove that the TTUR converges under mild assumptions to a stationary local Nash equilibrium. The convergence carries over to the popular Adam optimization, for which we prove that it follows the dynamics of a heavy ball with friction and thus prefers flat minima in the objective landscape. For the evaluation of the performance of GANs at image generation, we introduce the `Fréchet Inception Distance'' (FID) which captures the similarity of generated images to real ones better than the Inception Score. In experiments, TTUR improves learning for DCGANs and Improved Wasserstein GANs (WGAN-GP) outperforming conventional GAN training on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word Benchmark.

Author Information

Martin Heusel (LIT AI Lab / University Linz)
Hubert Ramsauer (LIT AI Lab / University Linz)
Tom Unterthiner (LIT AI Lab / University Linz)
Bernhard Nessler (Johannes Kepler University Linz)
Sepp Hochreiter (LIT AI Lab / University Linz)

Head of the LIT AI Lab and Professor of bioinformatics at the University of Linz. First to identify and analyze the vanishing gradient problem, the fundamental deep learning problem, in 1991. First author of the main paper on the now widely used LSTM RNNs. He implemented 'learning how to learn' (meta-learning) networks via LSTM RNNs and applied Deep Learning and RNNs to self-driving cars, sentiment analysis, reinforcement learning, bioinformatics, and medicine.

More from the Same Authors

  • 2021 : Modern Hopfield Networks for Return Decomposition for Delayed Rewards »
    Michael Widrich · Markus Hofmarcher · Vihang Patil · Angela Bitto · Sepp Hochreiter
  • 2021 : Understanding the Effects of Dataset Composition on Offline Reinforcement Learning »
    Kajetan Schweighofer · Markus Hofmarcher · Marius-Constantin Dinu · Philipp Renz · Angela Bitto · Vihang Patil · Sepp Hochreiter
  • 2021 Poster: The balancing principle for parameter choice in distance-regularized domain adaptation »
    Werner Zellinger · Natalia Shepeleva · Marius-Constantin Dinu · Hamid Eghbal-zadeh · Hoan Nguyen Duc Nguyen · Bernhard Nessler · Sergei Pereverzyev · Bernhard A. Moser
  • 2019 : Poster Session »
    Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jon Tamir · Numan Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Rebecca Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Greg Ongie
  • 2017 : Self-Normalizing Neural Networks »
    Tom Unterthiner
  • 2017 : Invited Talk 3 »
    Sepp Hochreiter
  • 2017 : Panel: Machine learning and audio signal processing: State of the art and future perspectives »
    Sepp Hochreiter · Bo Li · Karen Livescu · Arindam Mandal · Oriol Nieto · Malcolm Slaney · Hendrik Purwins
  • 2017 : Poster session 1 »
    Van-Doan Nguyen · Stephan Eismann · Haozhen Wu · Garrett Goh · Kristina Preuer · Tom Unterthiner · Matthew Ragoza · Tien-Lam PHAM · Günter Klambauer · Andrea Rocchetto · Maxwell Hutchinson · Qian Yang · Rafa Gomez-Bombarelli · Sheshera Mysore · Brooke Husic · Ryan-Rhys Griffiths · Masashi Tsubaki · Emma Strubell · Philippe Schwaller · Théophile Gaudin · Michael Brenner · Li Li
  • 2017 Spotlight: Self-Normalizing Neural Networks »
    Günter Klambauer · Tom Unterthiner · Andreas Mayr · Sepp Hochreiter
  • 2017 Poster: Self-Normalizing Neural Networks »
    Günter Klambauer · Tom Unterthiner · Andreas Mayr · Sepp Hochreiter
  • 2016 Symposium: Recurrent Neural Networks and Other Machines that Learn Algorithms »
    Jürgen Schmidhuber · Sepp Hochreiter · Alex Graves · Rupesh K Srivastava
  • 2015 Poster: Rectified Factor Networks »
    Okko Clevert · Andreas Mayr · Tom Unterthiner · Sepp Hochreiter
  • 2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
    Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Tom Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant
  • 2014 Workshop: Representation and Learning Methods for Complex Outputs »
    Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Rich Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Tom Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto