Timezone: »
Bayesian online algorithms for Sum-Product Networks (SPNs) need to update their posterior distribution after seeing one single additional instance. To do so, they must compute moments of the model parameters under this distribution. The best existing method for computing such moments scales quadratically in the size of the SPN, although it scales linearly for trees. This unfortunate scaling makes Bayesian online algorithms prohibitively expensive, except for small or tree-structured SPNs. We propose an optimal linear-time algorithm that works even when the SPN is a general directed acyclic graph (DAG), which significantly broadens the applicability of Bayesian online algorithms for SPNs. There are three key ingredients in the design and analysis of our algorithm: 1). For each edge in the graph, we construct a linear time reduction from the moment computation problem to a joint inference problem in SPNs. 2). Using the property that each SPN computes a multilinear polynomial, we give an efficient procedure for polynomial evaluation by differentiation without expanding the network that may contain exponentially many monomials. 3). We propose a dynamic programming method to further reduce the computation of the moments of all the edges in the graph from quadratic to linear. We demonstrate the usefulness of our linear time algorithm by applying it to develop a linear time assume density filter (ADF) for SPNs.
Author Information
Han Zhao (Carnegie Mellon University)
Geoffrey Gordon (MSR Montréal & CMU)
Dr. Gordon is an Associate Research Professor in the Department of Machine Learning at Carnegie Mellon University, and co-director of the Department's Ph. D. program. He works on multi-robot systems, statistical machine learning, game theory, and planning in probabilistic, adversarial, and general-sum domains. His previous appointments include Visiting Professor at the Stanford Computer Science Department and Principal Scientist at Burning Glass Technologies in San Diego. Dr. Gordon received his B.A. in Computer Science from Cornell University in 1991, and his Ph.D. in Computer Science from Carnegie Mellon University in 1999.
More from the Same Authors
-
2021 Poster: Quantifying and Improving Transferability in Domain Generalization »
Guojun Zhang · Han Zhao · Yaoliang Yu · Pascal Poupart -
2020 Poster: Trade-offs and Guarantees of Adversarial Representation Learning for Information Obfuscation »
Han Zhao · Jianfeng Chi · Yuan Tian · Geoffrey Gordon -
2020 Poster: Domain Adaptation with Conditional Distribution Matching and Generalized Label Shift »
Remi Tachet des Combes · Han Zhao · Yu-Xiang Wang · Geoffrey Gordon -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: Inherent Tradeoffs in Learning Fair Representations »
Han Zhao · Geoff Gordon -
2019 Poster: Learning Neural Networks with Adaptive Regularization »
Han Zhao · Yao-Hung Hubert Tsai · Russ Salakhutdinov · Geoffrey Gordon -
2019 Poster: Towards modular and programmable architecture search »
Renato Negrinho · Matthew Gormley · Geoffrey Gordon · Darshan Patil · Nghia Le · Daniel Ferreira -
2018 Poster: Learning Beam Search Policies via Imitation Learning »
Renato Negrinho · Matthew Gormley · Geoffrey Gordon -
2018 Poster: Dual Policy Iteration »
Wen Sun · Geoffrey Gordon · Byron Boots · J. Bagnell -
2018 Poster: Adversarial Multiple Source Domain Adaptation »
Han Zhao · Shanghang Zhang · Guanhang Wu · José M. F. Moura · Joao P Costeira · Geoffrey Gordon -
2017 Poster: Predictive State Recurrent Neural Networks »
Carlton Downey · Ahmed Hefny · Byron Boots · Geoffrey Gordon · Boyue Li -
2016 Poster: A Unified Approach for Learning the Parameters of Sum-Product Networks »
Han Zhao · Pascal Poupart · Geoffrey Gordon -
2015 Poster: Supervised Learning for Dynamical System Learning »
Ahmed Hefny · Carlton Downey · Geoffrey Gordon -
2014 Session: Oral Session 7 »
Geoffrey Gordon -
2012 Tutorial: Machine Learning for Student Learning »
Emma Brunskill · Geoffrey Gordon -
2010 Poster: Predictive State Temporal Difference Learning »
Byron Boots · Geoffrey Gordon -
2007 Oral: A Constraint Generation Approach to Learning Stable Linear Dynamical Systems »
Sajid M Siddiqi · Byron Boots · Geoffrey Gordon -
2007 Poster: A Constraint Generation Approach to Learning Stable Linear Dynamical Systems »
Sajid M Siddiqi · Byron Boots · Geoffrey Gordon -
2006 Poster: No-regret algorithms for Online Convex Programs »
Geoffrey Gordon -
2006 Talk: No-regret algorithms for Online Convex Programs »
Geoffrey Gordon -
2006 Poster: Multi-Robot Negotiation: Approximating the Set of Subgame Perfect Equilibria in General Sum Stochastic Games »
Chris D Murray · Geoffrey Gordon