Timezone: »
Lessons learned from designing Edward
Dustin Tran
Sat Dec 09 09:00 AM -- 09:45 AM (PST) @
Author Information
Dustin Tran (Google Brain)
More from the Same Authors
-
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2021 : Deep Classifiers with Label Noise Modeling and Distance Awareness »
Vincent Fortuin · Mark Collier · Florian Wenzel · James Allingham · Jeremiah Liu · Dustin Tran · Balaji Lakshminarayanan · Jesse Berent · Rodolphe Jenatton · Effrosyni Kokiopoulou -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2022 : Reliability benchmarks for image segmentation »
Estefany Kelly Buchanan · Michael Dusenberry · Jie Ren · Kevin Murphy · Balaji Lakshminarayanan · Dustin Tran -
2021 : Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks »
Neil Band · Tim G. J. Rudner · Qixuan Feng · Angelos Filos · Zachary Nado · Mike Dusenberry · Ghassen Jerfel · Dustin Tran · Yarin Gal -
2021 Poster: Soft Calibration Objectives for Neural Networks »
Archit Karandikar · Nicholas Cain · Dustin Tran · Balaji Lakshminarayanan · Jonathon Shlens · Michael Mozer · Becca Roelofs -
2021 Poster: Revisiting the Calibration of Modern Neural Networks »
Matthias Minderer · Josip Djolonga · Rob Romijnders · Frances Hubis · Xiaohua Zhai · Neil Houlsby · Dustin Tran · Mario Lucic -
2020 Session: Orals & Spotlights Track 33: Health/AutoML/(Soft|Hard)ware »
Dustin Tran · Artur Dubrawski -
2020 Poster: Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness »
Jeremiah Liu · Zi Lin · Shreyas Padhy · Dustin Tran · Tania Bedrax Weiss · Balaji Lakshminarayanan -
2020 Poster: Hyperparameter Ensembles for Robustness and Uncertainty Quantification »
Florian Wenzel · Jasper Snoek · Dustin Tran · Rodolphe Jenatton -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning Q&A »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2020 Tutorial: (Track2) Practical Uncertainty Estimation and Out-of-Distribution Robustness in Deep Learning »
Dustin Tran · Balaji Lakshminarayanan · Jasper Snoek -
2019 Poster: Bayesian Layers: A Module for Neural Network Uncertainty »
Dustin Tran · Mike Dusenberry · Mark van der Wilk · Danijar Hafner -
2019 Poster: Discrete Flows: Invertible Generative Models of Discrete Data »
Dustin Tran · Keyon Vafa · Kumar Agrawal · Laurent Dinh · Ben Poole -
2018 : Software Panel »
Ben Letham · David Duvenaud · Dustin Tran · Aki Vehtari -
2018 Poster: Autoconj: Recognizing and Exploiting Conjugacy Without a Domain-Specific Language »
Matthew D. Hoffman · Matthew Johnson · Dustin Tran -
2018 Poster: Simple, Distributed, and Accelerated Probabilistic Programming »
Dustin Tran · Matthew Hoffman · Dave Moore · Christopher Suter · Srinivas Vasudevan · Alexey Radul · Matthew Johnson · Rif A. Saurous -
2018 Poster: Mesh-TensorFlow: Deep Learning for Supercomputers »
Noam Shazeer · Youlong Cheng · Niki Parmar · Dustin Tran · Ashish Vaswani · Penporn Koanantakool · Peter Hawkins · HyoukJoong Lee · Mingsheng Hong · Cliff Young · Ryan Sepassi · Blake Hechtman -
2017 : Deep Probabilistic Programming »
Dustin Tran -
2017 : Contributed talk 3: Implicit Causal Models for Genome-wide Association Studies »
Dustin Tran -
2017 : Introduction »
Cheng Zhang · Francisco Ruiz · Dustin Tran · James McInerney · Stephan Mandt -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: Hierarchical Implicit Models and Likelihood-Free Variational Inference »
Dustin Tran · Rajesh Ranganath · David Blei -
2017 Poster: Variational Inference via $\chi$ Upper Bound Minimization »
Adji Bousso Dieng · Dustin Tran · Rajesh Ranganath · John Paisley · David Blei -
2016 Workshop: Advances in Approximate Bayesian Inference »
Tamara Broderick · Stephan Mandt · James McInerney · Dustin Tran · David Blei · Kevin Murphy · Andrew Gelman · Michael I Jordan -
2016 Poster: Operator Variational Inference »
Rajesh Ranganath · Dustin Tran · Jaan Altosaar · David Blei -
2015 : Variational Gaussian Process »
Dustin Tran -
2015 Workshop: Advances in Approximate Bayesian Inference »
Dustin Tran · Tamara Broderick · Stephan Mandt · James McInerney · Shakir Mohamed · Alp Kucukelbir · Matthew D. Hoffman · Neil Lawrence · David Blei -
2015 Poster: Copula variational inference »
Dustin Tran · David Blei · Edo M Airoldi