Timezone: »
Abstract
Communication is one of the most impressive human abilities. The question of how communication arises has been studied for many decades, if not centuries. However, due to computational and representational limitations, past work was restricted to low dimensional, simple observation spaces. With the rise of deep reinforcement learning methods, this question can now be studied in complex multi-agent settings, which has led to flourishing activity in the area over the last two years. In these settings agents can learn to communicate in grounded multi-modal environments and rich communication protocols emerge.
Last year at NIPS 2017 we successfully organized the inaugural workshop on emergent communication (https://sites.google.com/site/emecom2017/). We had a number of interesting submissions looking into the question of how language can emerge using evolution (see this Nature paper that was also presented at the workshop last year, https://www.nature.com/articles/srep34615) and under what conditions emerged language exhibits compositional properties, while others explored specific applications of agents that can communicate (e.g., answering questions about textual inputs, a paper presented by Google that was subsequently accepted as an oral presentation at ICLR this year, etc.).
While last year’s workshop was a great success, there are a lot of open questions. In particular, the more challenging and realistic use cases come from situations where agents do not have fully aligned interests and goals, i.e., how can we have credible communication amongst self-interested agents where each agent maximizes its own individual rewards rather than a joint team reward? This is a new computational modeling challenge for the community and recent preliminary results (e.g. “Emergent Communication through Negotiation”, Cao et al., ICLR 2018.) reinforce the fact that it is no easy feat.
Since machine learning has exploded in popularity recently, there is a tendency for researchers to only engage with recent machine learning literature, therefore at best reinventing the wheel and at worst recycling the same ideas over and over, increasing the probability of being stuck in local optima. For these reasons, just like last year, we want to take an interdisciplinary approach on the topic of emergent communication, inviting researchers from different fields (machine learning, game theory, evolutionary biology, linguistics, cognitive science, and programming languages) interested in the question of communication and emergent language to exchange ideas.
This is particularly important for this year’s focus, since the question of communication in general-sum settings has been an active topic of research in game theory and evolutionary biology for a number of years, while it’s a nascent topic in the area of machine learning.
Author Information
Jakob Foerster (University of Oxford)
Jakob Foerster is a PhD student in AI at the University of Oxford under the supervision of Shimon Whiteson and Nando de Freitas. Using deep reinforcement learning he studies the emergence of communication in multi-agent AI systems. Prior to his PhD Jakob spent four years working at Google and Goldman Sachs. Previously he has also worked on a number of research projects in systems neuroscience, including work at MIT and the Weizmann Institute.
Angeliki Lazaridou (DeepMind)
Ryan Lowe (McGill University)
Igor Mordatch (OpenAI)
Douwe Kiela (Facebook AI Research)
Kyunghyun Cho (NYU)
Kyunghyun Cho is an associate professor of computer science and data science at New York University and a research scientist at Facebook AI Research. He was a postdoctoral fellow at the Université de Montréal until summer 2015 under the supervision of Prof. Yoshua Bengio, and received PhD and MSc degrees from Aalto University early 2014 under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.
More from the Same Authors
-
2020 Workshop: HAMLETS: Human And Model in the Loop Evaluation and Training Strategies »
Divyansh Kaushik · Bhargavi Paranjape · Forough Arabshahi · Yanai Elazar · Yixin Nie · Max Bartolo · Polina Kirichenko · Pontus Lars Erik Saito Stenetorp · Mohit Bansal · Zachary Lipton · Douwe Kiela -
2020 Workshop: Talking to Strangers: Zero-Shot Emergent Communication »
Marie Ossenkopf · Angelos Filos · Abhinav Gupta · Michael Noukhovitch · Angeliki Lazaridou · Jakob Foerster · Kalesha Bullard · Rahma Chaabouni · Eugene Kharitonov · Roberto Dessì -
2020 Poster: Ridge Rider: Finding Diverse Solutions by Following Eigenvectors of the Hessian »
Jack Parker-Holder · Luke Metz · Cinjon Resnick · Hengyuan Hu · Adam Lerer · Alistair Letcher · Alexander Peysakhovich · Aldo Pacchiano · Jakob Foerster -
2020 Poster: The Hateful Memes Challenge: Detecting Hate Speech in Multimodal Memes »
Douwe Kiela · Hamed Firooz · Aravind Mohan · Vedanuj Goswami · Amanpreet Singh · Pratik Ringshia · Davide Testuggine -
2020 Poster: Learning to summarize with human feedback »
Nisan Stiennon · Long Ouyang · Jeffrey Wu · Daniel Ziegler · Ryan Lowe · Chelsea Voss · Alec Radford · Dario Amodei · Paul Christiano -
2020 Poster: Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks »
Patrick Lewis · Ethan Perez · Aleksandra Piktus · Fabio Petroni · Vladimir Karpukhin · Naman Goyal · Heinrich Küttler · Mike Lewis · Wen-tau Yih · Tim Rocktäschel · Sebastian Riedel · Douwe Kiela -
2020 Poster: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2020 Spotlight: Learning Optimal Representations with the Decodable Information Bottleneck »
Yann Dubois · Douwe Kiela · David Schwab · Ramakrishna Vedantam -
2019 Workshop: Emergent Communication: Towards Natural Language »
Abhinav Gupta · Michael Noukhovitch · Cinjon Resnick · Natasha Jaques · Angelos Filos · Marie Ossenkopf · Angeliki Lazaridou · Jakob Foerster · Ryan Lowe · Douwe Kiela · Kyunghyun Cho -
2019 Workshop: Context and Compositionality in Biological and Artificial Neural Systems »
Javier Turek · Shailee Jain · Alexander Huth · Leila Wehbe · Emma Strubell · Alan Yuille · Tal Linzen · Christopher Honey · Kyunghyun Cho -
2019 Workshop: Retrospectives: A Venue for Self-Reflection in ML Research »
Ryan Lowe · Yoshua Bengio · Joelle Pineau · Michela Paganini · Jessica Forde · Shagun Sodhani · Abhishek Gupta · Joel Lehman · Peter Henderson · Kanika Madan · Koustuv Sinha · Xavier Bouthillier -
2019 Poster: Can Unconditional Language Models Recover Arbitrary Sentences? »
Nishant Subramani · Samuel Bowman · Kyunghyun Cho -
2019 Poster: Loaded DiCE: Trading off Bias and Variance in Any-Order Score Function Gradient Estimators for Reinforcement Learning »
Gregory Farquhar · Shimon Whiteson · Jakob Foerster -
2019 Poster: Hyperbolic Graph Neural Networks »
Qi Liu · Maximilian Nickel · Douwe Kiela -
2019 Poster: Multi-Agent Common Knowledge Reinforcement Learning »
Christian Schroeder de Witt · Jakob Foerster · Gregory Farquhar · Philip Torr · Wendelin Boehmer · Shimon Whiteson -
2019 Poster: Biases for Emergent Communication in Multi-agent Reinforcement Learning »
Tom Eccles · Yoram Bachrach · Guy Lever · Angeliki Lazaridou · Thore Graepel -
2019 Poster: Implicit Generation and Modeling with Energy Based Models »
Yilun Du · Igor Mordatch -
2019 Spotlight: Implicit Generation and Modeling with Energy Based Models »
Yilun Du · Igor Mordatch -
2019 Tutorial: Imitation Learning and its Application to Natural Language Generation »
Kyunghyun Cho · Hal Daumé III -
2018 Workshop: Wordplay: Reinforcement and Language Learning in Text-based Games »
Adam Trischler · Angeliki Lazaridou · Yonatan Bisk · Wendy Tay · Nate Kushman · Marc-Alexandre Côté · Alessandro Sordoni · Daniel Ricks · Tom Zahavy · Hal Daumé III -
2018 Poster: Loss Functions for Multiset Prediction »
Sean Welleck · Zixin Yao · Yu Gai · Jialin Mao · Zheng Zhang · Kyunghyun Cho -
2017 Workshop: Emergent Communication Workshop »
Jakob Foerster · Igor Mordatch · Angeliki Lazaridou · Kyunghyun Cho · Douwe Kiela · Pieter Abbeel -
2017 Poster: A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning »
Marc Lanctot · Vinicius Zambaldi · Audrunas Gruslys · Angeliki Lazaridou · Karl Tuyls · Julien Perolat · David Silver · Thore Graepel -
2017 Poster: Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments »
Ryan Lowe · YI WU · Aviv Tamar · Jean Harb · OpenAI Pieter Abbeel · Igor Mordatch -
2017 Poster: Poincaré Embeddings for Learning Hierarchical Representations »
Maximillian Nickel · Douwe Kiela -
2017 Spotlight: Poincaré Embeddings for Learning Hierarchical Representations »
Maximillian Nickel · Douwe Kiela -
2017 Poster: Saliency-based Sequential Image Attention with Multiset Prediction »
Sean Welleck · Jialin Mao · Kyunghyun Cho · Zheng Zhang -
2016 Workshop: Machine Intelligence @ NIPS »
Tomas Mikolov · Baroni Marco · Armand Joulin · Germán Kruszewski · Angeliki Lazaridou · Klemen Simonic -
2016 Poster: End-to-End Goal-Driven Web Navigation »
Rodrigo Nogueira · Kyunghyun Cho -
2016 Poster: Iterative Refinement of the Approximate Posterior for Directed Belief Networks »
R Devon Hjelm · Russ Salakhutdinov · Kyunghyun Cho · Nebojsa Jojic · Vince Calhoun · Junyoung Chung -
2016 Poster: Learning to Communicate with Deep Multi-Agent Reinforcement Learning »
Jakob Foerster · Ioannis Assael · Nando de Freitas · Shimon Whiteson -
2015 Workshop: Multimodal Machine Learning »
Louis-Philippe Morency · Tadas Baltrusaitis · Aaron Courville · Kyunghyun Cho -
2015 Poster: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2015 Spotlight: Attention-Based Models for Speech Recognition »
Jan K Chorowski · Dzmitry Bahdanau · Dmitriy Serdyuk · Kyunghyun Cho · Yoshua Bengio -
2014 Poster: Identifying and attacking the saddle point problem in high-dimensional non-convex optimization »
Yann N Dauphin · Razvan Pascanu · Caglar Gulcehre · Kyunghyun Cho · Surya Ganguli · Yoshua Bengio -
2014 Poster: On the Number of Linear Regions of Deep Neural Networks »
Guido F Montufar · Razvan Pascanu · Kyunghyun Cho · Yoshua Bengio -
2014 Demonstration: Neural Machine Translation »
Bart van Merriënboer · Kyunghyun Cho · Dzmitry Bahdanau · Yoshua Bengio -
2014 Poster: Iterative Neural Autoregressive Distribution Estimator NADE-k »
Tapani Raiko · Yao Li · Kyunghyun Cho · Yoshua Bengio