Timezone: »

NIPS 2018 Workshop on Meta-Learning
Joaquin Vanschoren · Frank Hutter · Sachin Ravi · Jane Wang · Erin Grant

Sat Dec 08 05:00 AM -- 03:30 PM (PST) @ Room 220 E

Recent years have seen rapid progress in meta-learning methods, which learn (and optimize) the performance of learning methods based on data, generate new learning methods from scratch, and learn to transfer knowledge across tasks and domains. Meta-learning can be seen as the logical conclusion of the arc that machine learning has undergone in the last decade, from learning classifiers, to learning representations, and finally to learning algorithms that themselves acquire representations and classifiers. The ability to improve one’s own learning capabilities through experience can also be viewed as a hallmark of intelligent beings, and there are strong connections with work on human learning in neuroscience.

Meta-learning methods are also of substantial practical interest, since they have, e.g., been shown to yield new state-of-the-art automated machine learning methods, novel deep learning architectures, and substantially improved one-shot learning systems.

Some of the fundamental questions that this workshop aims to address are:
- What are the fundamental differences in the learning “task” compared to traditional “non-meta” learners?
- Is there a practical limit to the number of meta-learning layers (e.g., would a meta-meta-meta-learning algorithm be of practical use)?
- How can we design more sample-efficient meta-learning methods?
- How can we exploit our domain knowledge to effectively guide the meta-learning process?
- What are the meta-learning processes in nature (e.g, in humans), and how can we take inspiration from them?
- Which ML approaches are best suited for meta-learning, in which circumstances, and why?
- What principles can we learn from meta-learning to help us design the next generation of learning systems?

The goal of this workshop is to bring together researchers from all the different communities and topics that fall under the umbrella of meta-learning. We expect that the presence of these different communities will result in a fruitful exchange of ideas and stimulate an open discussion about the current challenges in meta-learning, as well as possible solutions.

In terms of prospective participants, our main targets are machine learning researchers interested in the processes related to understanding and improving current meta-learning algorithms. Specific target communities within machine learning include, but are not limited to: meta-learning, AutoML, reinforcement learning, deep learning, optimization, evolutionary computation, and Bayesian optimization. Our invited speakers also include researchers who study human learning, to provide a broad perspective to the attendees.

Sat 6:10 a.m. - 6:40 a.m. [iCal]
TBA (Invited Talk)
Lise Getoor
Sat 8:00 a.m. - 8:30 a.m. [iCal]
TBA 2 (Invited Talk)
Sergey Levine
Sat 10:30 a.m. - 11:00 a.m. [iCal]
TBA 3 (Invited Talk)
Hugo Larochelle
Sat 11:00 a.m. - 11:30 a.m. [iCal]
TBA 4 (Invited Talk)
Michele Sebag
Sat 1:00 p.m. - 1:30 p.m. [iCal]
TBA 5 (Invited Talk)
Nando de Freitas

Author Information

Joaquin Vanschoren (Eindhoven University of Technology, OpenML)

Joaquin Vanschoren is an Assistant Professor in Machine Learning at the Eindhoven University of Technology. He holds a PhD from the Katholieke Universiteit Leuven, Belgium. His research focuses on meta-learning and understanding and automating machine learning. He founded and leads OpenML.org, a popular open science platform that facilitates the sharing and reuse of reproducible empirical machine learning data. He obtained several demo and application awards and has been invited speaker at ECDA, StatComp, IDA, AutoML@ICML, CiML@NIPS, AutoML@PRICAI, MLOSS@NIPS, and many other occasions, as well as tutorial speaker at NIPS and ECMLPKDD. He was general chair at LION 2016, program chair of Discovery Science 2018, demo chair at ECMLPKDD 2013, and co-organizes the AutoML and meta-learning workshop series at NIPS 2018, ICML 2016-2018, ECMLPKDD 2012-2015, and ECAI 2012-2014. He is also editor and contributor to the book 'Automatic Machine Learning: Methods, Systems, Challenges'.

Frank Hutter (University of Freiburg)

Frank Hutter is a Full Professor for Machine Learning at the Computer Science Department of the University of Freiburg (Germany), where he previously was an assistant professor 2013-2017. Before that, he was at the University of British Columbia (UBC) for eight years, for his PhD and postdoc. Frank's main research interests lie in machine learning, artificial intelligence and automated algorithm design. For his 2009 PhD thesis on algorithm configuration, he received the CAIAC doctoral dissertation award for the best thesis in AI in Canada that year, and with his coauthors, he received several best paper awards and prizes in international competitions on machine learning, SAT solving, and AI planning. Since 2016 he holds an ERC Starting Grant for a project on automating deep learning based on Bayesian optimization, Bayesian neural networks, and deep reinforcement learning.

Sachin Ravi (Princeton University)
Jane Wang (DeepMind)
Erin Grant (UC Berkeley)

More from the Same Authors