Workshop
NIPS Workshop on Machine Learning for Intelligent Transportation Systems 2018
Li Erran Li · Anca Dragan · Juan Carlos Niebles · Silvio Savarese

Sat Dec 8th 08:00 AM -- 06:30 PM @ Room 514
Event URL: https://sites.google.com/site/nips2018mlits/home »

Our transportation systems are poised for a transformation as we make progress on autonomous vehicles, vehicle-to-vehicle (V2V) and vehicle-to-everything (V2X) communication infrastructures, and smart road infrastructures (like smart traffic lights). But many challenges stand in the way of this transformation. For example, how do we make perception accurate and robust enough to accomplish safe autonomous driving? How do we generate policies that equip autonomous cars with adaptive human negotiation skills when merging, overtaking, or yielding? How do we decide when a system is safe enough to deploy? And how do we optimize efficiency through intelligent traffic management and control of fleets?

To meet these requirements in safety, efficiency, control, and capacity, the systems must be automated with intelligent decision making. Machine learning will be an essential component of that. Machine learning has made rapid progress in the self-driving domain (e.g., in real-time perception and prediction of traffic scenes); has started to be applied to ride-sharing platforms such as Uber (e.g., demand forecasting); and by crowd-sourced video scene analysis companies such as Nexar (e.g., understanding and avoiding accidents). But to address the challenges arising in our future transportation system, we need to consider the transportation systems as a whole rather than solving problems in isolation, from prediction, to behavior, to infrastructure.

The goal of this workshop is to bring together researchers and practitioners from all areas of intelligent transportations systems to address core challenges with machine learning. These challenges include, but are not limited to
pedestrian detection, intent recognition, and negotiation,
coordination with human-driven vehicles,
machine learning for object tracking,
unsupervised representation learning for autonomous driving,
deep reinforcement learning for learning driving policies,
cross-modal and simulator to real-world transfer learning,
scene classification, real-time perception and prediction of traffic scenes,
uncertainty propagation in deep neural networks,
efficient inference with deep neural networks
predictive modeling of risk and accidents through telematics, modeling, simulation and forecast of demand and mobility patterns in large scale urban transportation systems,
machine learning approaches for control and coordination of traffic leveraging V2V and V2X infrastructures,

The workshop will include invited speakers, panels, presentations of accepted papers, and posters. We invite papers in the form of short, long, and position papers to address the core challenges mentioned above. We encourage researchers and practitioners on self-driving cars, transportation systems and ride-sharing platforms to participate. Since this is a topic of broad and current interest, we expect at least 150 participants from leading university researchers, auto-companies and ride-sharing companies.

This will be the 3rd NIPS workshop in this series. Previous workshops have been very successful and have attracted large numbers of participants from both academia and industry.

08:45 AM Opening Remark <span> <a href="#"></a> </span> Li Erran Li, Anca Dragan
09:00 AM Invited talk: Alfredo Canziani, NYU (Invited talk) Alfredo Canziani
09:30 AM Invited Talk: Drew Bagnell, CMU and Aurora (Invited talk) James Bagnell
10:00 AM Invited Talk: Yimeng Zhang, Pony.ai (Invited talk) Yimeng Zhang
10:30 AM Coffee break: morning (Coffee break)
11:00 AM Invited Talk: Nathaniel Fairfield, Waymo (Invited talk) Nathaniel Fairfield
11:30 AM John J. Leonard, MIT and TRI (Invited Talk) John Leonard
12:00 PM Lunch (Lunch Break)
01:30 PM Invited Talk: Dorsa Sadigh, Stanford (Invited talk) Dorsa Sadigh
02:00 PM Invited Talk: Marco Pavone, Stanford (Invited talk) Marco Pavone
02:30 PM Contributed Talks <span> <a href="#"></a> </span> Nick Rhinehart, Amar Shah
03:00 PM Coffee break: afternoon (Coffee break)
03:30 PM Invited Talk: Ingmar Posner, Oxford and Oxbotica (Invited talk) Ingmar Posner
04:00 PM Invited Talk: Ekaterina Taralova and Sarah Tariq, Zoox (Invited talk) Ekaterina Taralova, Sarah Tariq
04:30 PM Panel <span> <a href="#"></a> </span> Yimeng Zhang, Alfredo Canziani, Marco Pavone, Dorsa Sadigh, Kurt Keutzer
05:15 PM Poster Session <span> <a href="#"></a> </span>
Zihan Ding, David Mguni, Yuzheng Zhuang, Edouard Leurent, Takuma Oda, Yu Tachibana, Paweł Gora, Neema Davis, Nemanja Djuric, Fang-Chieh Chou, elmira amirloo

Author Information

Li Erran Li (Pony.ai)

Li Erran Li is the head of machine learning at Scale and an adjunct professor at Columbia University. Previously, he was chief scientist at Pony.ai. Before that, he was with the perception team at Uber ATG and machine learning platform team at Uber where he worked on deep learning for autonomous driving, led the machine learning platform team technically, and drove strategy for company-wide artificial intelligence initiatives. He started his career at Bell Labs. Li’s current research interests are machine learning, computer vision, learning-based robotics, and their application to autonomous driving. He has a PhD from the computer science department at Cornell University. He’s an ACM Fellow and IEEE Fellow.

Anca Dragan (UC Berkeley)
Juan Carlos Niebles (Stanford University)
Silvio Savarese (Stanford University)

More from the Same Authors