Timezone: »
In machine learning often a tradeoff must be made between accuracy and intelligibility: the most accurate models (deep nets, boosted trees and random forests) usually are not very intelligible, and the most intelligible models (logistic regression, small trees and decision lists) usually are less accurate. This tradeoff limits the accuracy of models that can be safely deployed in mission-critical applications such as healthcare where being able to understand, validate, edit, and ultimately trust a learned model is important. In this talk, I’ll present a case study where intelligibility is critical to uncover surprising patterns in the data that would have made deploying a black-box model risky. I’ll also show how distillation with intelligible models can be used to understand what is learned inside a black-box model such as a deep nets, and show a movie of what a deep net learns as it trains and then begins to overfit.
Author Information
Rich Caruana (Microsoft)
More from the Same Authors
-
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 : GAM Changer: Editing Generalized Additive Models with Interactive Visualization »
Jay Wang · Harsha Nori · Duen Horng Chau · Jennifer Wortman Vaughan · Rich Caruana -
2023 : Explaining high-dimensional text classifiers »
Odelia Melamed · Rich Caruana -
2023 : Extending Explainable Boosting Machines to Scientific Image Data »
Daniel Schug · Sai Yerramreddy · Rich Caruana · Craig Greenberg · Justyna Zwolak -
2023 : Elephants Never Forget: Testing Language Models for Memorization of Tabular Data »
Sebastian Bordt · Harsha Nori · Rich Caruana -
2021 : Invited talk (ML) - Rich Caruana »
Rich Caruana -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2019 Poster: Efficient Forward Architecture Search »
Hanzhang Hu · John Langford · Rich Caruana · Saurajit Mukherjee · Eric Horvitz · Debadeepta Dey -
2018 : Panel Discussion »
Rich Caruana · Mike Schuster · Ralf Schlüter · Hynek Hermansky · Renato De Mori · Samy Bengio · Michiel Bacchiani · Jason Eisner -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 : Rich Caruna - Justice May Be Blind But It Shouldn’t Be Opaque: The Risk of Using Black-Box Models in Healthcare & Criminal Justice »
Rich Caruana -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2017 : Invited Talk 6 »
Rich Caruana -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 Symposium: Interpretable Machine Learning »
Andrew Wilson · Jason Yosinski · Patrice Simard · Rich Caruana · William Herlands -
2015 : The risk of deploying unintelligible models in healthcare »
Rich Caruana -
2014 Poster: Do Deep Nets Really Need to be Deep? »
Jimmy Ba · Rich Caruana -
2013 Poster: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2013 Spotlight: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2010 Session: Spotlights Session 7 »
Rich Caruana -
2010 Session: Oral Session 8 »
Rich Caruana