`

Timezone: »

 
Poster
PAC-learning in the presence of adversaries
Daniel Cullina · Arjun Nitin Bhagoji · Prateek Mittal

Wed Dec 05 07:45 AM -- 09:45 AM (PST) @ Room 210 #82

The existence of evasion attacks during the test phase of machine learning algorithms represents a significant challenge to both their deployment and understanding. These attacks can be carried out by adding imperceptible perturbations to inputs to generate adversarial examples and finding effective defenses and detectors has proven to be difficult. In this paper, we step away from the attack-defense arms race and seek to understand the limits of what can be learned in the presence of an evasion adversary. In particular, we extend the Probably Approximately Correct (PAC)-learning framework to account for the presence of an adversary. We first define corrupted hypothesis classes which arise from standard binary hypothesis classes in the presence of an evasion adversary and derive the Vapnik-Chervonenkis (VC)-dimension for these, denoted as the adversarial VC-dimension. We then show that sample complexity upper bounds from the Fundamental Theorem of Statistical learning can be extended to the case of evasion adversaries, where the sample complexity is controlled by the adversarial VC-dimension. We then explicitly derive the adversarial VC-dimension for halfspace classifiers in the presence of a sample-wise norm-constrained adversary of the type commonly studied for evasion attacks and show that it is the same as the standard VC-dimension, closing an open question. Finally, we prove that the adversarial VC-dimension can be either larger or smaller than the standard VC-dimension depending on the hypothesis class and adversary, making it an interesting object of study in its own right.

Author Information

Daniel Cullina (Princeton University)
Arjun Nitin Bhagoji (Princeton University)
Prateek Mittal (Princeton University)

More from the Same Authors

  • 2021 : RobustBench: a standardized adversarial robustness benchmark »
    Francesco Croce · Maksym Andriushchenko · Vikash Sehwag · Edoardo Debenedetti · Nicolas Flammarion · Mung Chiang · Prateek Mittal · Matthias Hein
  • 2021 : A Novel Self-Distillation Architecture to Defeat Membership Inference Attacks »
    Xinyu Tang · Saeed Mahloujifar · Liwei Song · Virat Shejwalkar · Amir Houmansadr · Prateek Mittal
  • 2020 Poster: HYDRA: Pruning Adversarially Robust Neural Networks »
    Vikash Sehwag · Shiqi Wang · Prateek Mittal · Suman Jana
  • 2019 : Break / Poster Session 1 »
    Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · GaĆ«l Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang
  • 2019 Poster: Lower Bounds on Adversarial Robustness from Optimal Transport »
    Arjun Nitin Bhagoji · Daniel Cullina · Prateek Mittal