Timezone: »
We introduce Tempered Geodesic Markov Chain Monte Carlo (TG-MCMC) algorithm for initializing pose graph optimization problems, arising in various scenarios such as SFM (structure from motion) or SLAM (simultaneous localization and mapping). TG-MCMC is first of its kind as it unites global non-convex optimization on the spherical manifold of quaternions with posterior sampling, in order to provide both reliable initial poses and uncertainty estimates that are informative about the quality of solutions. We devise theoretical convergence guarantees and extensively evaluate our method on synthetic and real benchmarks. Besides its elegance in formulation and theory, we show that our method is robust to missing data, noise and the estimated uncertainties capture intuitive properties of the data.
Author Information
Tolga Birdal (Technical University of Munich)
Umut Simsekli (Telecom ParisTech)
Mustafa Onur Eken (Technical University of Munich)
Slobodan Ilic (Siemens AG)
More from the Same Authors
-
2020 Poster: Statistical and Topological Properties of Sliced Probability Divergences »
Kimia Nadjahi · Alain Durmus · Lénaïc Chizat · Soheil Kolouri · Shahin Shahrampour · Umut Simsekli -
2020 Spotlight: Statistical and Topological Properties of Sliced Probability Divergences »
Kimia Nadjahi · Alain Durmus · Lénaïc Chizat · Soheil Kolouri · Shahin Shahrampour · Umut Simsekli -
2020 Poster: CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations »
Davis Rempe · Tolga Birdal · Yongheng Zhao · Zan Gojcic · Srinath Sridhar · Leonidas Guibas -
2020 Spotlight: CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations »
Davis Rempe · Tolga Birdal · Yongheng Zhao · Zan Gojcic · Srinath Sridhar · Leonidas Guibas -
2020 Poster: Explicit Regularisation in Gaussian Noise Injections »
Alexander Camuto · Matthew Willetts · Umut Simsekli · Stephen J Roberts · Chris C Holmes -
2020 Poster: Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks »
Umut Simsekli · Ozan Sener · George Deligiannidis · Murat Erdogdu -
2020 Poster: Quantitative Propagation of Chaos for SGD in Wide Neural Networks »
Valentin De Bortoli · Alain Durmus · Xavier Fontaine · Umut Simsekli -
2020 Spotlight: Hausdorff Dimension, Heavy Tails, and Generalization in Neural Networks »
Umut Simsekli · Ozan Sener · George Deligiannidis · Murat Erdogdu -
2019 Poster: Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance »
Kimia Nadjahi · Alain Durmus · Umut Simsekli · Roland Badeau -
2019 Spotlight: Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance »
Kimia Nadjahi · Alain Durmus · Umut Simsekli · Roland Badeau -
2019 Poster: First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise »
Thanh Huy Nguyen · Umut Simsekli · Mert Gurbuzbalaban · Gaël RICHARD -
2019 Poster: Generalized Sliced Wasserstein Distances »
Soheil Kolouri · Kimia Nadjahi · Umut Simsekli · Roland Badeau · Gustavo Rohde -
2017 Poster: Learning the Morphology of Brain Signals Using Alpha-Stable Convolutional Sparse Coding »
Mainak Jas · Tom Dupré la Tour · Umut Simsekli · Alexandre Gramfort -
2016 Poster: Stochastic Gradient Richardson-Romberg Markov Chain Monte Carlo »
Alain Durmus · Umut Simsekli · Eric Moulines · Roland Badeau · Gaël RICHARD -
2011 Poster: Generalised Coupled Tensor Factorisation »
Kenan Y Yılmaz · Taylan Cemgil · Umut Simsekli