Timezone: »
Fine-Grained Visual Classification (FGVC) is an important computer vision problem that involves small diversity within the different classes, and often requires expert annotators to collect data. Utilizing this notion of small visual diversity, we revisit Maximum-Entropy learning in the context of fine-grained classification, and provide a training routine that maximizes the entropy of the output probability distribution for training convolutional neural networks on FGVC tasks. We provide a theoretical as well as empirical justification of our approach, and achieve state-of-the-art performance across a variety of classification tasks in FGVC, that can potentially be extended to any fine-tuning task. Our method is robust to different hyperparameter values, amount of training data and amount of training label noise and can hence be a valuable tool in many similar problems.
Author Information
Abhimanyu Dubey (MIT)
Otkrist Gupta (MIT)
Ramesh Raskar (MIT)
Nikhil Naik (Massachusetts Institute of Technology)
More from the Same Authors
-
2022 : Designing active and thermostable enzymes with sequence-only predictive models »
Clara Fannjiang · Micah Olivas · Eric Greene · Craig Markin · Bram Wallace · Ben Krause · Margaux Pinney · James Fraser · Polly Fordyce · Ali Madani · Nikhil Naik -
2022 : Scalable Collaborative Learning via Representation Sharing »
Frédéric Berdoz · Abhishek Singh · Martin Jaggi · Ramesh Raskar -
2021 Poster: Deep Extrapolation for Attribute-Enhanced Generation »
Alvin Chan · Ali Madani · Ben Krause · Nikhil Naik -
2021 Poster: One More Step Towards Reality: Cooperative Bandits with Imperfect Communication »
Udari Madhushani · Abhimanyu Dubey · Naomi Leonard · Alex Pentland -
2020 : Contributed Talk - ProGen: Language Modeling for Protein Generation »
Ali Madani · Bryan McCann · Nikhil Naik · · Possu Huang · Richard Socher -
2020 Poster: Differentially-Private Federated Linear Bandits »
Abhimanyu Dubey · Alex `Sandy' Pentland -
2020 Spotlight: Differentially-Private Federated Linear Bandits »
Abhimanyu Dubey · Alex `Sandy' Pentland -
2019 : Poster Session »
Nathalie Baracaldo · Seth Neel · Tuyen Le · Dan Philps · Suheng Tao · Sotirios Chatzis · Toyo Suzumura · Wei Wang · WENHANG BAO · Solon Barocas · Manish Raghavan · Samuel Maina · Reginald Bryant · Kush Varshney · Skyler D. Speakman · Navdeep Gill · Nicholas Schmidt · Kevin Compher · Naveen Sundar Govindarajulu · Vivek Sharma · Praneeth Vepakomma · Tristan Swedish · Jayashree Kalpathy-Cramer · Ramesh Raskar · Shihao Zheng · Mykola Pechenizkiy · Marco Schreyer · Li Ling · Chirag Nagpal · Robert Tillman · Manuela Veloso · Hanjie Chen · Xintong Wang · Michael Wellman · Matthew van Adelsberg · Ben Wood · Hans Buehler · Mahmoud Mahfouz · Antonios Alexos · Megan Shearer · Antigoni Polychroniadou · Lucia Larise Stavarache · Dmitry Efimov · Johnston P Hall · Yukun Zhang · Emily Diana · Sumitra Ganesh · Vineeth Ravi · · Swetasudha Panda · Xavier Renard · Matthew Jagielski · Yonadav Shavit · Joshua Williams · Haoran Wei · Shuang (Sophie) Zhai · Xinyi Li · Hongda Shen · Daiki Matsunaga · Jaesik Choi · Alexis Laignelet · Batuhan Guler · Jacobo Roa Vicens · Ajit Desai · Jonathan Aigrain · Robert Samoilescu -
2017 : Poster Session / Coffee Break »
Hongyu Ren · Sheng Lundquist · Steven Hickson · Abhimanyu Dubey · Saki Shinoda · Ana Marasović · Otilia Stretcu · Fitsum Reda · Vikas Raunak · Cicero dos Santos · Liane Canas · Jesus Mager Hois · Martin Hirzel -
2017 : Poster Sessions »
Dennis Forster · David I Inouye · Shashank Srivastava · Martine De Cock · Srinagesh Sharma · Mateusz Kozinski · Petr Babkin · maxime he · Zhe Cui · Shivani Rao · Ramesh Raskar · Pradipto Das · Albert Zhao · Ravi Lanka