Timezone: »
Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. We conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures. Finally, we did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in \cite{goodfellow2014generative}.
Author Information
Mario Lucic (Google Brain)
Karol Kurach (Google Brain)
Marcin Michalski (Google)
Sylvain Gelly (Google Brain (Zurich))
Olivier Bousquet (Google Brain (Zurich))
More from the Same Authors
-
2020 Memorial: In Memory of Olivier Chapelle »
Bernhard Schölkopf · Andre Elisseeff · Olivier Bousquet · Vladimir Vapnik · Jason E Weston -
2020 Poster: Synthetic Data Generators -- Sequential and Private »
Olivier Bousquet · Roi Livni · Shay Moran -
2020 Poster: What Do Neural Networks Learn When Trained With Random Labels? »
Hartmut Maennel · Ibrahim Alabdulmohsin · Ilya Tolstikhin · Robert Baldock · Olivier Bousquet · Sylvain Gelly · Daniel Keysers -
2020 Spotlight: What Do Neural Networks Learn When Trained With Random Labels? »
Hartmut Maennel · Ibrahim Alabdulmohsin · Ilya Tolstikhin · Robert Baldock · Olivier Bousquet · Sylvain Gelly · Daniel Keysers -
2020 Session: Orals & Spotlights Track 08: Deep Learning »
Graham Taylor · Mario Lucic -
2019 Poster: Adaptive Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty Estimates »
Carlos Riquelme · Hugo Penedones · Damien Vincent · Hartmut Maennel · Sylvain Gelly · Timothy A Mann · Andre Barreto · Gergely Neu -
2019 Poster: Practical and Consistent Estimation of f-Divergences »
Paul Rubenstein · Olivier Bousquet · Josip Djolonga · Carlos Riquelme · Ilya Tolstikhin -
2018 Poster: Deep Generative Models for Distribution-Preserving Lossy Compression »
Michael Tschannen · Eirikur Agustsson · Mario Lucic -
2018 Poster: Assessing Generative Models via Precision and Recall »
Mehdi S. M. Sajjadi · Olivier Bachem · Mario Lucic · Olivier Bousquet · Sylvain Gelly -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2017 Poster: Approximation and Convergence Properties of Generative Adversarial Learning »
Shuang Liu · Olivier Bousquet · Kamalika Chaudhuri -
2017 Spotlight: Approximation and Convergence Properties of Generative Adversarial Learning »
Shuang Liu · Olivier Bousquet · Kamalika Chaudhuri -
2017 Poster: AdaGAN: Boosting Generative Models »
Ilya Tolstikhin · Sylvain Gelly · Olivier Bousquet · Carl-Johann SIMON-GABRIEL · Bernhard Schölkopf -
2007 Poster: The Tradeoffs of Large Scale Learning »
Leon Bottou · Olivier Bousquet -
2006 Demonstration: MoGo: exploration-exploitation in Monte-Carlo Go using UCT and patterns »
Olivier Teytaud · Sylvain Gelly