Timezone: »
Humans routinely retrace paths in a novel environment both forwards and backwards despite uncertainty in their motion. This paper presents an approach for doing so. Given a demonstration of a path, a first network generates a path abstraction. Equipped with this abstraction, a second network observes the world and decides how to act to retrace the path under noisy actuation and a changing environment. The two networks are optimized end-to-end at training time. We evaluate the method in two realistic simulators, performing path following and homing under actuation noise and environmental changes. Our experiments show that our approach outperforms classical approaches and other learning based baselines.
Author Information
Ashish Kumar (UC Berkeley)
Saurabh Gupta (UC Berkeley / FAIR / UIUC)
David Fouhey (UC Berkeley)
Sergey Levine (UC Berkeley)
Jitendra Malik (University of California at Berkley)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Oral: Visual Memory for Robust Path Following »
Wed Dec 5th 03:05 -- 03:20 PM Room Room 220 E
More from the Same Authors
-
2020 Poster: Model Inversion Networks for Model-Based Optimization »
Aviral Kumar · Sergey Levine -
2020 Poster: Continual Learning of Control Primitives : Skill Discovery via Reset-Games »
Kelvin Xu · Siddharth Verma · Chelsea Finn · Sergey Levine -
2020 Poster: Gradient Surgery for Multi-Task Learning »
Tianhe Yu · Saurabh Kumar · Abhishek Gupta · Sergey Levine · Karol Hausman · Chelsea Finn -
2020 Poster: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Ben Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Poster: Conservative Q-Learning for Offline Reinforcement Learning »
Aviral Kumar · Aurick Zhou · George Tucker · Sergey Levine -
2020 Oral: Rewriting History with Inverse RL: Hindsight Inference for Policy Improvement »
Ben Eysenbach · XINYANG GENG · Sergey Levine · Russ Salakhutdinov -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications Q&A »
Sergey Levine · Aviral Kumar -
2020 Poster: Gamma-Models: Generative Temporal Difference Learning for Infinite-Horizon Prediction »
Michael Janner · Igor Mordatch · Sergey Levine -
2020 Poster: One Solution is Not All You Need: Few-Shot Extrapolation via Structured MaxEnt RL »
Saurabh Kumar · Aviral Kumar · Sergey Levine · Chelsea Finn -
2020 Poster: 3D Shape Reconstruction from Vision and Touch »
Edward Smith · Roberto Calandra · Adriana Romero · Georgia Gkioxari · David Meger · Jitendra Malik · Michal Drozdzal -
2020 Poster: Long-Horizon Visual Planning with Goal-Conditioned Hierarchical Predictors »
Karl Pertsch · Oleh Rybkin · Frederik Ebert · Shenghao Zhou · Dinesh Jayaraman · Chelsea Finn · Sergey Levine -
2020 Poster: Stochastic Latent Actor-Critic: Deep Reinforcement Learning with a Latent Variable Model »
Alex X. Lee · Anusha Nagabandi · Pieter Abbeel · Sergey Levine -
2020 Poster: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2020 Poster: MOPO: Model-based Offline Policy Optimization »
Tianhe Yu · Garrett Thomas · Lantao Yu · Stefano Ermon · James Zou · Sergey Levine · Chelsea Finn · Tengyu Ma -
2020 Poster: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Spotlight: DisCor: Corrective Feedback in Reinforcement Learning via Distribution Correction »
Aviral Kumar · Abhishek Gupta · Sergey Levine -
2020 Oral: Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design »
Michael Dennis · Natasha Jaques · Eugene Vinitsky · Alexandre Bayen · Stuart Russell · Andrew Critch · Sergey Levine -
2020 Tutorial: (Track3) Offline Reinforcement Learning: From Algorithm Design to Practical Applications »
Sergey Levine · Aviral Kumar -
2019 Poster: Wasserstein Dependency Measure for Representation Learning »
Sherjil Ozair · Corey Lynch · Yoshua Bengio · Aaron van den Oord · Sergey Levine · Pierre Sermanet -
2019 Poster: Planning with Goal-Conditioned Policies »
Soroush Nasiriany · Vitchyr Pong · Steven Lin · Sergey Levine -
2019 Poster: Search on the Replay Buffer: Bridging Planning and Reinforcement Learning »
Ben Eysenbach · Russ Salakhutdinov · Sergey Levine -
2019 Poster: MCP: Learning Composable Hierarchical Control with Multiplicative Compositional Policies »
Xue Bin Peng · Michael Chang · Grace Zhang · Pieter Abbeel · Sergey Levine -
2019 Poster: Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction »
Aviral Kumar · Justin Fu · George Tucker · Sergey Levine -
2019 Poster: Unsupervised Curricula for Visual Meta-Reinforcement Learning »
Allan Jabri · Kyle Hsu · Abhishek Gupta · Ben Eysenbach · Sergey Levine · Chelsea Finn -
2019 Poster: Compositional Plan Vectors »
Coline Devin · Daniel Geng · Pieter Abbeel · Trevor Darrell · Sergey Levine -
2019 Spotlight: Unsupervised Curricula for Visual Meta-Reinforcement Learning »
Allan Jabri · Kyle Hsu · Abhishek Gupta · Ben Eysenbach · Sergey Levine · Chelsea Finn -
2019 Poster: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Poster: Meta-Learning with Implicit Gradients »
Aravind Rajeswaran · Chelsea Finn · Sham Kakade · Sergey Levine -
2019 Poster: When to Trust Your Model: Model-Based Policy Optimization »
Michael Janner · Justin Fu · Marvin Zhang · Sergey Levine -
2019 Poster: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Spotlight: Guided Meta-Policy Search »
Russell Mendonca · Abhishek Gupta · Rosen Kralev · Pieter Abbeel · Sergey Levine · Chelsea Finn -
2019 Oral: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Poster: Approximate Feature Collisions in Neural Nets »
Ke Li · Tianhao Zhang · Jitendra Malik -
2018 Poster: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2018 Spotlight: Deep Reinforcement Learning in a Handful of Trials using Probabilistic Dynamics Models »
Kurtland Chua · Roberto Calandra · Rowan McAllister · Sergey Levine -
2018 Poster: FastGRNN: A Fast, Accurate, Stable and Tiny Kilobyte Sized Gated Recurrent Neural Network »
Aditya Kusupati · Manish Singh · Kush Bhatia · Ashish Kumar · Prateek Jain · Manik Varma -
2018 Poster: Probabilistic Model-Agnostic Meta-Learning »
Chelsea Finn · Kelvin Xu · Sergey Levine -
2018 Poster: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Visual Reinforcement Learning with Imagined Goals »
Ashvin Nair · Vitchyr Pong · Murtaza Dalal · Shikhar Bahl · Steven Lin · Sergey Levine -
2018 Spotlight: Visual Reinforcement Learning with Imagined Goals »
Ashvin Nair · Vitchyr Pong · Murtaza Dalal · Shikhar Bahl · Steven Lin · Sergey Levine -
2018 Spotlight: Meta-Reinforcement Learning of Structured Exploration Strategies »
Abhishek Gupta · Russell Mendonca · YuXuan Liu · Pieter Abbeel · Sergey Levine -
2018 Poster: Variational Inverse Control with Events: A General Framework for Data-Driven Reward Definition »
Justin Fu · Avi Singh · Dibya Ghosh · Larry Yang · Sergey Levine -
2018 Poster: Data-Efficient Hierarchical Reinforcement Learning »
Ofir Nachum · Shixiang (Shane) Gu · Honglak Lee · Sergey Levine -
2018 Poster: Where Do You Think You're Going?: Inferring Beliefs about Dynamics from Behavior »
Sid Reddy · Anca Dragan · Sergey Levine -
2017 Workshop: Workshop on Meta-Learning »
Roberto Calandra · Frank Hutter · Hugo Larochelle · Sergey Levine -
2017 Poster: EX2: Exploration with Exemplar Models for Deep Reinforcement Learning »
Justin Fu · John Co-Reyes · Sergey Levine -
2017 Spotlight: EX2: Exploration with Exemplar Models for Deep Reinforcement Learning »
Justin Fu · John Co-Reyes · Sergey Levine -
2017 Demonstration: Deep Robotic Learning using Visual Imagination and Meta-Learning »
Chelsea Finn · Frederik Ebert · Tianhe Yu · Annie Xie · Sudeep Dasari · Pieter Abbeel · Sergey Levine -
2017 Poster: Learning a Multi-View Stereo Machine »
Abhishek Kar · Christian Häne · Jitendra Malik -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2016 Workshop: Deep Learning for Action and Interaction »
Chelsea Finn · Raia Hadsell · David Held · Sergey Levine · Percy Liang -
2016 Poster: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2016 Oral: Value Iteration Networks »
Aviv Tamar · Sergey Levine · Pieter Abbeel · YI WU · Garrett Thomas -
2014 Workshop: Novel Trends and Applications in Reinforcement Learning »
Csaba Szepesvari · Marc Deisenroth · Sergey Levine · Pedro Ortega · Brian Ziebart · Emma Brunskill · Naftali Tishby · Gerhard Neumann · Daniel Lee · Sridhar Mahadevan · Pieter Abbeel · David Silver · Vicenç Gómez -
2014 Poster: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2014 Spotlight: Learning Neural Network Policies with Guided Policy Search under Unknown Dynamics »
Sergey Levine · Pieter Abbeel -
2013 Poster: Variational Policy Search via Trajectory Optimization »
Sergey Levine · Vladlen Koltun -
2010 Poster: Feature Construction for Inverse Reinforcement Learning »
Sergey Levine · Zoran Popovic · Vladlen Koltun