Timezone: »
Poster
Large Margin Deep Networks for Classification
Gamaleldin Elsayed · Dilip Krishnan · Hossein Mobahi · Kevin Regan · Samy Bengio
We present a formulation of deep learning that aims at producing a large margin classifier. The notion of \emc{margin}, minimum distance to a decision boundary, has served as the foundation of several theoretically profound and empirically successful results for both classification and regression tasks. However, most large margin algorithms are applicable only to shallow models with a preset feature representation; and conventional margin methods for neural networks only enforce margin at the output layer.
Such methods are therefore not well suited for deep networks. In this work, we propose a novel loss function to impose a margin on any chosen set of layers of a deep network (including input and hidden layers). Our formulation allows choosing any $l_p$ norm ($p \geq 1$) on the metric measuring the margin. We demonstrate that the decision boundary obtained by our loss has nice properties compared to standard classification loss functions. Specifically, we show improved empirical results on the MNIST, CIFAR-10 and ImageNet datasets on multiple tasks:
generalization from small training sets, corrupted labels, and robustness against adversarial perturbations. The resulting loss is general and complementary to existing data augmentation (such as random/adversarial input transform) and regularization techniques such as weight decay, dropout, and batch norm. \footnote{Code for the large margin loss function is released at \url{https://github.com/google-research/google-research/tree/master/large_margin}}
Author Information
Gamaleldin Elsayed (Google Brain)
Dilip Krishnan (Google)
Hossein Mobahi (Google Research)
Kevin Regan (Google)
Samy Bengio (Google Research, Brain Team)
More from the Same Authors
-
2022 : Trajectory ensembling for fine tuning - performance gains without modifying training »
Louise Anderson-Conway · Vighnesh Birodkar · Saurabh Singh · Hossein Mobahi · Alexander Alemi -
2022 : Neural Network Online Training with Sensitivity to Multiscale Temporal Structure »
Matt Jones · Tyler Scott · Gamaleldin Elsayed · Mengye Ren · Katherine Hermann · David Mayo · Michael Mozer -
2022 : Spatial Symmetry in Slot Attention »
Ondrej Biza · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Gamaleldin Elsayed · Aravindh Mahendran · Thomas Kipf -
2022 : Teacher-generated pseudo human spatial-attention labels boost contrastive learning models »
Yushi Yao · Chang Ye · Junfeng He · Gamaleldin Elsayed -
2022 : Continuous Soft Pseudo-Labeling in ASR »
Tatiana Likhomanenko · Ronan Collobert · Navdeep Jaitly · Samy Bengio -
2023 Poster: Transformers learn through gradual rank increase »
Emmanuel Abbe · Samy Bengio · Enric Boix-Adsera · Etai Littwin · Joshua Susskind -
2023 Poster: On student-teacher deviations in distillation: does it pay to disobey? »
Vaishnavh Nagarajan · Aditya Menon · Srinadh Bhojanapalli · Hossein Mobahi · Sanjiv Kumar -
2023 Poster: Sharpness-Aware Minimization Leads to Low-Rank Features »
Maksym Andriushchenko · Dara Bahri · Hossein Mobahi · Nicolas Flammarion -
2022 Poster: SAVi++: Towards End-to-End Object-Centric Learning from Real-World Videos »
Gamaleldin Elsayed · Aravindh Mahendran · Sjoerd van Steenkiste · Klaus Greff · Michael Mozer · Thomas Kipf -
2022 Poster: Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures »
Emmanuel Abbe · Samy Bengio · Elisabetta Cornacchia · Jon Kleinberg · Aryo Lotfi · Maithra Raghu · Chiyuan Zhang -
2021 Poster: Learnable Fourier Features for Multi-dimensional Spatial Positional Encoding »
Yang Li · Si Si · Gang Li · Cho-Jui Hsieh · Samy Bengio -
2021 Poster: Improving Anytime Prediction with Parallel Cascaded Networks and a Temporal-Difference Loss »
Michael Iuzzolino · Michael Mozer · Samy Bengio -
2020 Poster: Memory Based Trajectory-conditioned Policies for Learning from Sparse Rewards »
Yijie Guo · Jongwook Choi · Marcin Moczulski · Shengyu Feng · Samy Bengio · Mohammad Norouzi · Honglak Lee -
2020 Poster: Supervised Contrastive Learning »
Prannay Khosla · Piotr Teterwak · Chen Wang · Aaron Sarna · Yonglong Tian · Phillip Isola · Aaron Maschinot · Ce Liu · Dilip Krishnan -
2020 Poster: What Makes for Good Views for Contrastive Learning? »
Yonglong Tian · Chen Sun · Ben Poole · Dilip Krishnan · Cordelia Schmid · Phillip Isola -
2020 Poster: Self-Distillation Amplifies Regularization in Hilbert Space »
Hossein Mobahi · Mehrdad Farajtabar · Peter Bartlett -
2020 Session: Orals & Spotlights Track 17: Kernel Methods/Optimization »
Chiranjib Bhattacharyya · Hossein Mobahi -
2020 : Dr. Samy Bengio (Google Brain) »
Samy Bengio -
2019 : Contributed Session - Spotlight Talks »
Jonathan Frankle · David Schwab · Ari Morcos · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · YiDing Jiang · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Sho Yaida · Muqiao Yang -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 Poster: Transfusion: Understanding Transfer Learning for Medical Imaging »
Maithra Raghu · Chiyuan Zhang · Jon Kleinberg · Samy Bengio -
2019 Poster: Adversarial Robustness through Local Linearization »
Chongli Qin · James Martens · Sven Gowal · Dilip Krishnan · Krishnamurthy Dvijotham · Alhussein Fawzi · Soham De · Robert Stanforth · Pushmeet Kohli -
2019 Poster: Saccader: Improving Accuracy of Hard Attention Models for Vision »
Gamaleldin Elsayed · Simon Kornblith · Quoc V Le -
2018 : Panel Discussion »
Rich Caruana · Mike Schuster · Ralf Schlüter · Hynek Hermansky · Renato De Mori · Samy Bengio · Michiel Bacchiani · Jason Eisner -
2018 Poster: Insights on representational similarity in neural networks with canonical correlation »
Ari Morcos · Maithra Raghu · Samy Bengio -
2018 Poster: Adversarial Examples that Fool both Computer Vision and Time-Limited Humans »
Gamaleldin Elsayed · Shreya Shankar · Brian Cheung · Nicolas Papernot · Alexey Kurakin · Ian Goodfellow · Jascha Sohl-Dickstein -
2018 Poster: Content preserving text generation with attribute controls »
Lajanugen Logeswaran · Honglak Lee · Samy Bengio -
2017 : Competition I: Adversarial Attacks and Defenses »
Alexey Kurakin · Ian Goodfellow · Samy Bengio · Yao Zhao · Yinpeng Dong · Tianyu Pang · Fangzhou Liao · Cihang Xie · Adithya Ganesh · Oguz Elibol -
2016 Workshop: Extreme Classification: Multi-class and Multi-label Learning in Extremely Large Label Spaces »
Moustapha Cisse · Manik Varma · Samy Bengio -
2016 Poster: Can Active Memory Replace Attention? »
Łukasz Kaiser · Samy Bengio -
2016 Poster: An Online Sequence-to-Sequence Model Using Partial Conditioning »
Navdeep Jaitly · Quoc V Le · Oriol Vinyals · Ilya Sutskever · David Sussillo · Samy Bengio -
2016 Poster: Domain Separation Networks »
Konstantinos Bousmalis · George Trigeorgis · Nathan Silberman · Dilip Krishnan · Dumitru Erhan -
2016 Poster: Reward Augmented Maximum Likelihood for Neural Structured Prediction »
Mohammad Norouzi · Samy Bengio · zhifeng Chen · Navdeep Jaitly · Mike Schuster · Yonghui Wu · Dale Schuurmans -
2015 Poster: Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks »
Samy Bengio · Oriol Vinyals · Navdeep Jaitly · Noam Shazeer -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: DeViSE: A Deep Visual-Semantic Embedding Model »
Andrea Frome · Greg Corrado · Jonathon Shlens · Samy Bengio · Jeff Dean · Marc'Aurelio Ranzato · Tomas Mikolov -
2012 Workshop: Big Data Meets Computer Vision: First International Workshop on Large Scale Visual Recognition and Retrieval »
Jia Deng · Samy Bengio · Yuanqing Lin · Li Fei-Fei -
2010 Poster: Label Embedding Trees for Large Multi-Class Tasks »
Samy Bengio · Jason E Weston · David Grangier -
2009 Poster: Group Sparse Coding »
Samy Bengio · Fernando Pereira · Yoram Singer · Dennis Strelow -
2009 Poster: An Online Algorithm for Large Scale Image Similarity Learning »
Gal Chechik · Uri Shalit · Varun Sharma · Samy Bengio -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 2) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2007 Workshop: Efficient Machine Learning - Overcoming Computational Bottlenecks in Machine Learning (Part 1) »
Samy Bengio · Corinna Cortes · Dennis DeCoste · Francois Fleuret · Ramesh Natarajan · Edwin Pednault · Dan Pelleg · Elad Yom-Tov -
2006 Workshop: Learning to Compare Examples »
David Grangier · Samy Bengio