Timezone: »
Attention mechanism is effective in both focusing the deep learning models on relevant features and interpreting them. However, attentions may be unreliable since the networks that generate them are often trained in a weakly-supervised manner. To overcome this limitation, we introduce the notion of input-dependent uncertainty to the attention mechanism, such that it generates attention for each feature with varying degrees of noise based on the given input, to learn larger variance on instances it is uncertain about. We learn this Uncertainty-aware Attention (UA) mechanism using variational inference, and validate it on various risk prediction tasks from electronic health records on which our model significantly outperforms existing attention models. The analysis of the learned attentions shows that our model generates attentions that comply with clinicians' interpretation, and provide richer interpretation via learned variance. Further evaluation of both the accuracy of the uncertainty calibration and the prediction performance with "I don't know'' decision show that UA yields networks with high reliability as well.
Author Information
Jay Heo (KAIST)
Hae Beom Lee (KAIST)
Saehoon Kim (AITRICS)
Juho Lee (University of Oxford)
Kwang Joon Kim (Yonsei University College of Medicine)
Eunho Yang (Korea Advanced Institute of Science and Technology; AItrics)
Sung Ju Hwang (KAIST, AItrics)
More from the Same Authors
-
2022 : Distortion-Aware Network Pruning and Feature Reuse for Real-time Video Segmentation »
Hyunsu Rhee · Dongchan Min · Sunil Hwang · Bruno Andreis · Sung Ju Hwang -
2022 : Targeted Adversarial Self-Supervised Learning »
Minseon Kim · Hyeonjeong Ha · Sooel Son · Sung Ju Hwang -
2022 : Few-Shot Transferable Robust Representation Learning via Bilevel Attacks »
Minseon Kim · Hyeonjeong Ha · Sung Ju Hwang -
2021 Poster: Adaptive Proximal Gradient Methods for Structured Neural Networks »
Jihun Yun · Aurelie Lozano · Eunho Yang -
2021 Poster: Unbiased Classification through Bias-Contrastive and Bias-Balanced Learning »
Youngkyu Hong · Eunho Yang -
2020 Poster: Bootstrapping neural processes »
Juho Lee · Yoonho Lee · Jungtaek Kim · Eunho Yang · Sung Ju Hwang · Yee Whye Teh -
2020 Poster: Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning »
Jaehyung Kim · Youngbum Hur · Sejun Park · Eunho Yang · Sung Ju Hwang · Jinwoo Shin -
2020 Poster: Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph Link Prediction »
Jinheon Baek · Dong Bok Lee · Sung Ju Hwang -
2020 Poster: Time-Reversal Symmetric ODE Network »
In Huh · Eunho Yang · Sung Ju Hwang · Jinwoo Shin -
2020 Poster: Neural Complexity Measures »
Yoonho Lee · Juho Lee · Sung Ju Hwang · Eunho Yang · Seungjin Choi -
2020 Poster: Adversarial Self-Supervised Contrastive Learning »
Minseon Kim · Jihoon Tack · Sung Ju Hwang -
2020 Poster: MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures »
Jeong Un Ryu · JaeWoong Shin · Hae Beom Lee · Sung Ju Hwang -
2020 Spotlight: MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and Architectures »
Jeong Un Ryu · JaeWoong Shin · Hae Beom Lee · Sung Ju Hwang -
2020 Poster: Few-shot Visual Reasoning with Meta-Analogical Contrastive Learning »
Youngsung Kim · Jinwoo Shin · Eunho Yang · Sung Ju Hwang -
2020 Poster: Attribution Preservation in Network Compression for Reliable Network Interpretation »
Geondo Park · June Yong Yang · Sung Ju Hwang · Eunho Yang -
2019 : Coffee Break & Poster Session 2 »
Juho Lee · Yoonho Lee · Yee Whye Teh · Raymond A. Yeh · Yuan-Ting Hu · Alex Schwing · Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Christian Bueno · Aditya Sanghi · Pradeep Kumar Jayaraman · Ignacio Arroyo-Fernández · Andrew Hryniowski · Vinayak Mathur · Sanjay Singh · Shahrzad Haddadan · Vasco Portilheiro · Luna Zhang · Mert Yuksekgonul · Jhosimar Arias Figueroa · Deepak Maurya · Balaraman Ravindran · Frank NIELSEN · Philip Pham · Justin Payan · Andrew McCallum · Jinesh Mehta · Ke SUN -
2019 : Contributed Talk - Towards deep amortized clustering »
Juho Lee · Yoonho Lee · Yee Whye Teh -
2018 Poster: Joint Active Feature Acquisition and Classification with Variable-Size Set Encoding »
Hajin Shim · Sung Ju Hwang · Eunho Yang -
2018 Poster: DropMax: Adaptive Variational Softmax »
Hae Beom Lee · Juho Lee · Saehoon Kim · Eunho Yang · Sung Ju Hwang -
2017 : Learning to Transfer Initializations for Bayesian Hyperparameter Optimization »
Saehoon Kim -
2015 Poster: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Spotlight: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Poster: Robust Gaussian Graphical Modeling with the Trimmed Graphical Lasso »
Eunho Yang · Aurelie Lozano -
2014 Poster: Elementary Estimators for Graphical Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2013 Poster: Conditional Random Fields via Univariate Exponential Families »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: On Poisson Graphical Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: Dirty Statistical Models »
Eunho Yang · Pradeep Ravikumar -
2012 Poster: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Oral: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu