Timezone: »

Gradient Descent for Spiking Neural Networks
Dongsung Huh · Terrence J Sejnowski

Wed Dec 05 02:00 PM -- 04:00 PM (PST) @ Room 210 #69

Most large-scale network models use neurons with static nonlinearities that produce analog output, despite the fact that information processing in the brain is predominantly carried out by dynamic neurons that produce discrete pulses called spikes. Research in spike-based computation has been impeded by the lack of efficient supervised learning algorithm for spiking neural networks. Here, we present a gradient descent method for optimizing spiking network models by introducing a differentiable formulation of spiking dynamics and deriving the exact gradient calculation. For demonstration, we trained recurrent spiking networks on two dynamic tasks: one that requires optimizing fast (~ millisecond) spike-based interactions for efficient encoding of information, and a delayed-memory task over extended duration (~ second). The results show that the gradient descent approach indeed optimizes networks dynamics on the time scale of individual spikes as well as on behavioral time scales. In conclusion, our method yields a general purpose supervised learning algorithm for spiking neural networks, which can facilitate further investigations on spike-based computations.

Author Information

Ben Huh (MIT-IBM AI Center)
Terrence J Sejnowski (Salk Institute)

More from the Same Authors