Timezone: »
We propose a data-efficient Gaussian process-based Bayesian approach to the semi-supervised learning problem on graphs. The proposed model shows extremely competitive performance when compared to the state-of-the-art graph neural networks on semi-supervised learning benchmark experiments, and outperforms the neural networks in active learning experiments where labels are scarce. Furthermore, the model does not require a validation data set for early stopping to control over-fitting. Our model can be viewed as an instance of empirical distribution regression weighted locally by network connectivity. We further motivate the intuitive construction of the model with a Bayesian linear model interpretation where the node features are filtered by an operator related to the graph Laplacian. The method can be easily implemented by adapting off-the-shelf scalable variational inference algorithms for Gaussian processes.
Author Information
Yin Cheng Ng (University College London)
Nicolò Colombo (University College London)
Ricardo Silva (University College London)
More from the Same Authors
-
2022 : Pragmatic Fairness: Optimizing Policies with Outcome Disparity Control »
Limor Gultchin · Siyuan Guo · Alan Malek · Silvia Chiappa · Ricardo Silva -
2022 : Evaluating the Impact of Geometric and Statistical Skews on Out-Of-Distribution Generalization Performance »
Aengus Lynch · Jean Kaddour · Ricardo Silva -
2022 : Evaluating the Impact of Geometric and Statistical Skews on Out-Of-Distribution Generalization Performance »
Aengus Lynch · Jean Kaddour · Ricardo Silva -
2022 : Partial identification without distributional assumptions »
Kirtan Padh · Jakob Zeitler · David Watson · Matt Kusner · Ricardo Silva · Niki Kilbertus -
2023 Poster: Intervention Generalization: A View from Factor Graph Models »
Gecia Bravo-Hermsdorff · David Watson · Jialin Yu · Jakob Zeitler · Ricardo Silva -
2022 Poster: When Do Flat Minima Optimizers Work? »
Jean Kaddour · Linqing Liu · Ricardo Silva · Matt Kusner -
2021 : Ricardo Silva - The Road to Causal Programming »
Ricardo Silva -
2021 Poster: Causal Effect Inference for Structured Treatments »
Jean Kaddour · Yuchen Zhu · Qi Liu · Matt Kusner · Ricardo Silva -
2020 : Invited Talk: On Prediction, Action and Interference »
Ricardo Silva -
2020 Poster: A Class of Algorithms for General Instrumental Variable Models »
Niki Kilbertus · Matt Kusner · Ricardo Silva -
2017 : Posters »
Reihaneh Rabbany · Tianxi Li · Jacob Carroll · Yin Cheng Ng · Xueyu Mao · Alexandre Hollocou · Jeric Briones · James Atwood · John Santerre · Natalie Klein · Pranamesh Chakraborty · Zahra Razaee · Chandan Singh · Arun Suggala · Beilun Wang · Andrew R. Lawrence · Aditya Grover · FARSHAD HARIRCHI · radhika arava · Qing Zhou · Takatomi Kubo · Josue Orellana · Govinda Kamath · Vivek Kumar Bagaria -
2017 : Edge Exchangeable Temporal Network Models »
Yin Cheng Ng -
2017 Workshop: From 'What If?' To 'What Next?' : Causal Inference and Machine Learning for Intelligent Decision Making »
Ricardo Silva · Panagiotis Toulis · John Shawe-Taylor · Alexander Volfovsky · Thorsten Joachims · Lihong Li · Nathan Kallus · Adith Swaminathan -
2017 Poster: Counterfactual Fairness »
Matt Kusner · Joshua Loftus · Chris Russell · Ricardo Silva -
2017 Oral: Counterfactual Fairness »
Matt Kusner · Joshua Loftus · Chris Russell · Ricardo Silva -
2017 Poster: Tomography of the London Underground: a Scalable Model for Origin-Destination Data »
Nicolò Colombo · Ricardo Silva · Soong Moon Kang -
2017 Poster: When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness »
Chris Russell · Matt Kusner · Joshua Loftus · Ricardo Silva -
2016 Workshop: "What If?" Inference and Learning of Hypothetical and Counterfactual Interventions in Complex Systems »
Ricardo Silva · John Shawe-Taylor · Adith Swaminathan · Thorsten Joachims -
2016 Poster: Observational-Interventional Priors for Dose-Response Learning »
Ricardo Silva -
2016 Poster: Scaling Factorial Hidden Markov Models: Stochastic Variational Inference without Messages »
Yin Cheng Ng · Pawel M Chilinski · Ricardo Silva -
2016 Poster: A posteriori error bounds for joint matrix decomposition problems »
Nicolò Colombo · Nikos Vlassis -
2014 Poster: Causal Inference through a Witness Protection Program »
Ricardo Silva · Robin Evans -
2013 Poster: Flexible sampling of discrete data correlations without the marginal distributions »
Alfredo Kalaitzis · Ricardo Silva -
2011 Poster: Thinning Measurement Models and Questionnaire Design »
Ricardo Silva -
2007 Poster: Hidden Common Cause Relations in Relational Learning »
Ricardo Silva · Wei Chu · Zoubin Ghahramani -
2007 Spotlight: Hidden Common Cause Relations in Relational Learning »
Ricardo Silva · Wei Chu · Zoubin Ghahramani