Timezone: »
There are now several large scale deployments of differential privacy used to collect statistical information about users. However, these deployments periodically recollect the data and recompute the statistics using algorithms designed for a single use. As a result, these systems do not provide meaningful privacy guarantees over long time scales. Moreover, existing techniques to mitigate this effect do not apply in the ``local model'' of differential privacy that these systems use.
In this paper, we introduce a new technique for local differential privacy that makes it possible to maintain up-to-date statistics over time, with privacy guarantees that degrade only in the number of changes in the underlying distribution rather than the number of collection periods. We use our technique for tracking a changing statistic in the setting where users are partitioned into an unknown collection of groups, and at every time period each user draws a single bit from a common (but changing) group-specific distribution. We also provide an application to frequency and heavy-hitter estimation.
Author Information
Matthew Joseph (University of Pennsylvania)
Aaron Roth (University of Pennsylvania)
Jonathan Ullman (Northeastern University)
Bo Waggoner (Microsoft)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Spotlight: Local Differential Privacy for Evolving Data »
Tue. Dec 4th 08:35 -- 08:40 PM Room Room 517 CD
More from the Same Authors
-
2021 Spotlight: Covariance-Aware Private Mean Estimation Without Private Covariance Estimation »
Gavin Brown · Marco Gaboardi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou -
2021 : Efficient Competitions and Online Learning with Strategic Forecasters »
Anish Thilagar · Rafael Frongillo · Bo Waggoner · Robert Gomez -
2021 : Efficient Competitions and Online Learning with Strategic Forecasters »
Anish Thilagar · Rafael Frongillo · Bo Waggoner · Robert Gomez -
2022 : Differentially Private Gradient Boosting on Linear Learners for Tabular Data »
Saeyoung Rho · Shuai Tang · Sergul Aydore · Michael Kearns · Aaron Roth · Yu-Xiang Wang · Steven Wu · Cedric Archambeau -
2022 Poster: Online Minimax Multiobjective Optimization: Multicalibeating and Other Applications »
Daniel Lee · Georgy Noarov · Mallesh Pai · Aaron Roth -
2022 Poster: Practical Adversarial Multivalid Conformal Prediction »
Osbert Bastani · Varun Gupta · Christopher Jung · Georgy Noarov · Ramya Ramalingam · Aaron Roth -
2022 Poster: Private Synthetic Data for Multitask Learning and Marginal Queries »
Giuseppe Vietri · Cedric Archambeau · Sergul Aydore · William Brown · Michael Kearns · Aaron Roth · Ankit Siva · Shuai Tang · Steven Wu -
2021 : Panel »
Oluwaseyi Feyisetan · Helen Nissenbaum · Aaron Roth · Christine Task -
2021 : Invited talk: Aaron Roth (UPenn / Amazon): Machine Unlearning. »
Aaron Roth -
2021 Poster: Adaptive Machine Unlearning »
Varun Gupta · Christopher Jung · Seth Neel · Aaron Roth · Saeed Sharifi-Malvajerdi · Chris Waites -
2021 Poster: Covariance-Aware Private Mean Estimation Without Private Covariance Estimation »
Gavin Brown · Marco Gaboardi · Adam Smith · Jonathan Ullman · Lydia Zakynthinou -
2021 Poster: Surrogate Regret Bounds for Polyhedral Losses »
Rafael Frongillo · Bo Waggoner -
2021 Poster: Unifying lower bounds on prediction dimension of convex surrogates »
Jessica Finocchiaro · Rafael Frongillo · Bo Waggoner -
2020 Poster: CoinPress: Practical Private Mean and Covariance Estimation »
Sourav Biswas · Yihe Dong · Gautam Kamath · Jonathan Ullman -
2020 Poster: Private Identity Testing for High-Dimensional Distributions »
Clément L Canonne · Gautam Kamath · Audra McMillan · Jonathan Ullman · Lydia Zakynthinou -
2020 Poster: Auditing Differentially Private Machine Learning: How Private is Private SGD? »
Matthew Jagielski · Jonathan Ullman · Alina Oprea -
2020 Spotlight: Private Identity Testing for High-Dimensional Distributions »
Clément L Canonne · Gautam Kamath · Audra McMillan · Jonathan Ullman · Lydia Zakynthinou -
2019 : Aaron Roth, "Average Individual Fairness" »
Aaron Roth -
2019 : Pan-Private Uniformity Testing »
Kareem Amin · Matthew Joseph -
2019 : Gaussian Differential Privacy »
Jinshuo Dong · Aaron Roth -
2019 : Invited talk #3 »
Aaron Roth -
2019 Poster: Average Individual Fairness: Algorithms, Generalization and Experiments »
Saeed Sharifi-Malvajerdi · Michael Kearns · Aaron Roth -
2019 Poster: Equal Opportunity in Online Classification with Partial Feedback »
Yahav Bechavod · Katrina Ligett · Aaron Roth · Bo Waggoner · Steven Wu -
2019 Oral: Average Individual Fairness: Algorithms, Generalization and Experiments »
Saeed Sharifi-Malvajerdi · Michael Kearns · Aaron Roth -
2019 Poster: Differentially Private Algorithms for Learning Mixtures of Separated Gaussians »
Gautam Kamath · Or Sheffet · Vikrant Singhal · Jonathan Ullman -
2019 Poster: Efficiently Estimating Erdos-Renyi Graphs with Node Differential Privacy »
Jonathan Ullman · Adam Sealfon -
2018 Poster: The Limits of Post-Selection Generalization »
Jonathan Ullman · Adam Smith · Kobbi Nissim · Uri Stemmer · Thomas Steinke -
2018 Poster: Online Learning with an Unknown Fairness Metric »
Stephen Gillen · Christopher Jung · Michael Kearns · Aaron Roth -
2018 Poster: A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem »
Sampath Kannan · Jamie Morgenstern · Aaron Roth · Bo Waggoner · Zhiwei Steven Wu -
2018 Spotlight: A Smoothed Analysis of the Greedy Algorithm for the Linear Contextual Bandit Problem »
Sampath Kannan · Jamie Morgenstern · Aaron Roth · Bo Waggoner · Zhiwei Steven Wu -
2018 Poster: Bounded-Loss Private Prediction Markets »
Rafael Frongillo · Bo Waggoner -
2018 Spotlight: Bounded-Loss Private Prediction Markets »
Rafael Frongillo · Bo Waggoner -
2017 Poster: Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM »
Katrina Ligett · Seth Neel · Aaron Roth · Bo Waggoner · Steven Wu -
2016 Workshop: Adaptive Data Analysis »
Vitaly Feldman · Aaditya Ramdas · Aaron Roth · Adam Smith -
2016 Poster: Privacy Odometers and Filters: Pay-as-you-Go Composition »
Ryan Rogers · Salil Vadhan · Aaron Roth · Jonathan Ullman -
2016 Poster: Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs »
Shahin Jabbari · Ryan Rogers · Aaron Roth · Steven Wu -
2016 Poster: Fairness in Learning: Classic and Contextual Bandits »
Matthew Joseph · Michael Kearns · Jamie Morgenstern · Aaron Roth -
2015 Workshop: Adaptive Data Analysis »
Adam Smith · Aaron Roth · Vitaly Feldman · Moritz Hardt -
2015 Poster: Generalization in Adaptive Data Analysis and Holdout Reuse »
Cynthia Dwork · Vitaly Feldman · Moritz Hardt · Toni Pitassi · Omer Reingold · Aaron Roth -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie