Timezone: »

 
Poster
Recurrent World Models Facilitate Policy Evolution
David Ha · Jürgen Schmidhuber

Wed Dec 05 02:00 PM -- 04:00 PM (PST) @ Room 210 #65

A generative recurrent neural network is quickly trained in an unsupervised manner to model popular reinforcement learning environments through compressed spatio-temporal representations. The world model's extracted features are fed into compact and simple policies trained by evolution, achieving state of the art results in various environments. We also train our agent entirely inside of an environment generated by its own internal world model, and transfer this policy back into the actual environment. Interactive version of this paper is available at https://worldmodels.github.io

Author Information

David Ha (Google Brain)
Jürgen Schmidhuber (Swiss AI Lab, IDSIA (USI & SUPSI) - NNAISENSE)

Since age 15, his main goal has been to build an Artificial Intelligence smarter than himself, then retire. The Deep Learning Artificial Neural Networks developed since 1991 by his research groups have revolutionised handwriting recognition, speech recognition, machine translation, image captioning, and are now available to billions of users through Google, Microsoft, IBM, Baidu, and many other companies (DeepMind also was heavily influenced by his lab). His team's Deep Learners were the first to win object detection and image segmentation contests, and achieved the world's first superhuman visual classification results, winning nine international competitions in machine learning & pattern recognition. His formal theory of fun & creativity & curiosity explains art, science, music, and humor. He has published 333 papers, earned 7 best paper/best video awards, the 2013 Helmholtz Award of the International Neural Networks Society, and the 2016 IEEE Neural Networks Pioneer Award. He is also president of NNAISENSE, which aims at building the first practical general purpose AI.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors