Poster
Optimistic optimization of a Brownian
Jean-Bastien Grill · Michal Valko · Remi Munos

Thu Dec 6th 05:00 -- 07:00 PM @ Room 517 AB #157
We address the problem of optimizing a Brownian motion. We consider a (random) realization $W$ of a Brownian motion with input space in $[0,1]$. Given $W$, our goal is to return an $\epsilon$-approximation of its maximum using the smallest possible number of function evaluations, the sample complexity of the algorithm. We provide an algorithm with sample complexity of order $\log^2(1/\epsilon)$. This improves over previous results of Al-Mharmah and Calvin (1996) and Calvin et al. (2017) which provided only polynomial rates. Our algorithm is adaptive---each query depends on previous values---and is an instance of the optimism-in-the-face-of-uncertainty principle.

Author Information

Jean-Bastien Grill (Google DeepMind)
Michal Valko (DeepMind Paris and Inria Lille - Nord Europe)

Michal is a research scientist in DeepMind Paris and SequeL team at Inria Lille - Nord Europe, France, lead by Philippe Preux and Rémi Munos. He also teaches the course Graphs in Machine Learning at l'ENS Cachan. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimising the data that humans need spend inspecting, classifying, or “tuning” the algorithms. Another important feature of machine learning algorithms should be the ability to adapt to changing environments. That is why he is working in domains that are able to deal with minimal feedback, such as semi-supervised learning, bandit algorithms, and anomaly detection. The common thread of Michal's work has been adaptive graph-based learning and its application to the real world applications such as recommender systems, medical error detection, and face recognition. His industrial collaborators include Intel, Technicolor, and Microsoft Research. He received his PhD in 2011 from University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos.

Remi Munos (DeepMind)

More from the Same Authors