Timezone: »

Optimistic optimization of a Brownian
Jean-Bastien Grill · Michal Valko · Remi Munos

Thu Dec 06 02:00 PM -- 04:00 PM (PST) @ Room 517 AB #157
We address the problem of optimizing a Brownian motion. We consider a (random) realization $W$ of a Brownian motion with input space in $[0,1]$. Given $W$, our goal is to return an $\epsilon$-approximation of its maximum using the smallest possible number of function evaluations, the sample complexity of the algorithm. We provide an algorithm with sample complexity of order $\log^2(1/\epsilon)$. This improves over previous results of Al-Mharmah and Calvin (1996) and Calvin et al. (2017) which provided only polynomial rates. Our algorithm is adaptive---each query depends on previous values---and is an instance of the optimism-in-the-face-of-uncertainty principle.

Author Information

Jean-Bastien Grill (Google DeepMind)
Michal Valko (DeepMind Paris and Inria Lille - Nord Europe)
Michal Valko

Michal is a machine learning scientist in DeepMind Paris, tenured researcher at Inria, and the lecturer of the master course Graphs in Machine Learning at l'ENS Paris-Saclay. Michal is primarily interested in designing algorithms that would require as little human supervision as possible. This means 1) reducing the “intelligence” that humans need to input into the system and 2) minimizing the data that humans need to spend inspecting, classifying, or “tuning” the algorithms. That is why he is working on methods and settings that are able to deal with minimal feedback, such as deep reinforcement learning, bandit algorithms, or self-supervised learning. Michal is actively working on represenation learning and building worlds models. He is also working on deep (reinforcement) learning algorithm that have some theoretical underpinning. He has also worked on sequential algorithms with structured decisions where exploiting the structure leads to provably faster learning. He received his Ph.D. in 2011 from the University of Pittsburgh under the supervision of Miloš Hauskrecht and after was a postdoc of Rémi Munos before taking a permanent position at Inria in 2012.

Remi Munos (DeepMind)

More from the Same Authors