Timezone: »
In order to achieve state-of-the-art performance, modern machine learning techniques require careful data pre-processing and hyperparameter tuning. Moreover, given the ever increasing number of machine learning models being developed, model selection is becoming increasingly important. Automating the selection and tuning of machine learning pipelines, which can include different data pre-processing methods and machine learning models, has long been one of the goals of the machine learning community. In this paper, we propose to solve this meta-learning task by combining ideas from collaborative filtering and Bayesian optimization. Specifically, we use a probabilistic matrix factorization model to transfer knowledge across experiments performed in hundreds of different datasets and use an acquisition function to guide the exploration of the space of possible ML pipelines. In our experiments, we show that our approach quickly identifies high-performing pipelines across a wide range of datasets, significantly outperforming the current state-of-the-art.
Author Information
Nicolo Fusi (Microsoft Research)
Rishit Sheth (Microsoft Research New England)
Melih Elibol (UC Berkeley)
More from the Same Authors
-
2022 Poster: Rapid Model Architecture Adaption for Meta-Learning »
Yiren Zhao · Xitong Gao · I Shumailov · Nicolo Fusi · Robert Mullins -
2020 Poster: Geometric Dataset Distances via Optimal Transport »
David Alvarez-Melis · Nicolo Fusi -
2018 : Poster spotlight #2 »
Nicolo Fusi · Chidubem Arachie · Joao Monteiro · Steffen Wolf -
2018 Poster: Gaussian Process Prior Variational Autoencoders »
Francesco Paolo Casale · Adrian Dalca · Luca Saglietti · Jennifer Listgarten · Nicolo Fusi -
2017 Workshop: Machine Learning in Computational Biology »
James Zou · Anshul Kundaje · Gerald Quon · Nicolo Fusi · Sara Mostafavi -
2017 Poster: Excess Risk Bounds for the Bayes Risk using Variational Inference in Latent Gaussian Models »
Rishit Sheth · Roni Khardon -
2016 Workshop: Machine Learning in Computational Biology »
Gerald Quon · Sara Mostafavi · James Y Zou · Barbara Engelhardt · Oliver Stegle · Nicolo Fusi -
2015 Workshop: Machine Learning in Computational Biology »
Nicolo Fusi · Anna Goldenberg · Sara Mostafavi · Gerald Quon · Oliver Stegle