Timezone: »

Probabilistic Matrix Factorization for Automated Machine Learning
Nicolo Fusi · Rishit Sheth · Melih Elibol

Wed Dec 05 02:00 PM -- 04:00 PM (PST) @ Room 210 #15

In order to achieve state-of-the-art performance, modern machine learning techniques require careful data pre-processing and hyperparameter tuning. Moreover, given the ever increasing number of machine learning models being developed, model selection is becoming increasingly important. Automating the selection and tuning of machine learning pipelines, which can include different data pre-processing methods and machine learning models, has long been one of the goals of the machine learning community. In this paper, we propose to solve this meta-learning task by combining ideas from collaborative filtering and Bayesian optimization. Specifically, we use a probabilistic matrix factorization model to transfer knowledge across experiments performed in hundreds of different datasets and use an acquisition function to guide the exploration of the space of possible ML pipelines. In our experiments, we show that our approach quickly identifies high-performing pipelines across a wide range of datasets, significantly outperforming the current state-of-the-art.

Author Information

Nicolo Fusi (Microsoft Research)
Rishit Sheth (Microsoft Research New England)
Melih Elibol (UC Berkeley)

More from the Same Authors