Timezone: »
Author Information
Yitong Sun (University of Michigan)
Anna Gilbert (University of Michigan)
Anna Gilbert received an S.B. degree from the University of Chicago and a Ph.D. from Princeton University, both in mathematics. In 1997, she was a postdoctoral fellow at Yale University and AT&T Labs-Research. From 1998 to 2004, she was a member of technical staff at AT&T Labs-Research in Florham Park, NJ. Since then she has been with the Department of Mathematics at the University of Michigan, where she is now a Professor. She has received several awards, including a Sloan Research Fellowship (2006), an NSF CAREER award (2006), the National Academy of Sciences Award for Initiatives in Research (2008), the Association of Computing Machinery (ACM) Douglas Engelbart Best Paper award (2008), and the EURASIP Signal Processing Best Paper award (2010). Her research interests include analysis, probability, networking, and algorithms. She is especially interested in randomized algorithms with applications to harmonic analysis, signal and image processing, networking, and massive datasets.
Ambuj Tewari (University of Michigan)
More from the Same Authors
-
2020 Poster: Tree! I am no Tree! I am a low dimensional Hyperbolic Embedding »
Rishi Sonthalia · Anna Gilbert -
2020 Poster: TorsionNet: A Reinforcement Learning Approach to Sequential Conformer Search »
Tarun Gogineni · Ziping Xu · Exequiel Punzalan · Runxuan Jiang · Joshua Kammeraad · Ambuj Tewari · Paul Zimmerman -
2020 Poster: Reinforcement Learning in Factored MDPs: Oracle-Efficient Algorithms and Tighter Regret Bounds for the Non-Episodic Setting »
Ziping Xu · Ambuj Tewari -
2020 Poster: On the Equivalence between Online and Private Learnability beyond Binary Classification »
Young H Jung · Baekjin Kim · Ambuj Tewari -
2020 Spotlight: On the Equivalence between Online and Private Learnability beyond Binary Classification »
Young H Jung · Baekjin Kim · Ambuj Tewari -
2019 Poster: Generalization Bounds in the Predict-then-Optimize Framework »
Othman El Balghiti · Adam N. Elmachtoub · Paul Grigas · Ambuj Tewari -
2019 Poster: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2019 Spotlight: Online Learning via the Differential Privacy Lens »
Jacob Abernethy · Young H Jung · Chansoo Lee · Audra McMillan · Ambuj Tewari -
2019 Poster: Regret Bounds for Thompson Sampling in Episodic Restless Bandit Problems »
Young H Jung · Ambuj Tewari -
2019 Poster: On the Optimality of Perturbations in Stochastic and Adversarial Multi-armed Bandit Problems »
Baekjin Kim · Ambuj Tewari -
2018 Poster: Active Learning for Non-Parametric Regression Using Purely Random Trees »
Jack Goetz · Ambuj Tewari · Paul Zimmerman -
2017 Poster: Action Centered Contextual Bandits »
Kristjan Greenewald · Ambuj Tewari · Susan Murphy · Predag Klasnja -
2017 Poster: Online multiclass boosting »
Young H Jung · Jack Goetz · Ambuj Tewari -
2016 Poster: Phased Exploration with Greedy Exploitation in Stochastic Combinatorial Partial Monitoring Games »
Sougata Chaudhuri · Ambuj Tewari -
2015 Poster: Predtron: A Family of Online Algorithms for General Prediction Problems »
Prateek Jain · Nagarajan Natarajan · Ambuj Tewari -
2015 Poster: Fighting Bandits with a New Kind of Smoothness »
Jacob D Abernethy · Chansoo Lee · Ambuj Tewari -
2015 Poster: Alternating Minimization for Regression Problems with Vector-valued Outputs »
Prateek Jain · Ambuj Tewari -
2014 Workshop: Large-scale reinforcement learning and Markov decision problems »
Benjamin Van Roy · Mohammad Ghavamzadeh · Peter Bartlett · Yasin Abbasi Yadkori · Ambuj Tewari -
2014 Poster: On Iterative Hard Thresholding Methods for High-dimensional M-Estimation »
Prateek Jain · Ambuj Tewari · Purushottam Kar -
2013 Poster: Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses »
Harish G Ramaswamy · Shivani Agarwal · Ambuj Tewari -
2013 Spotlight: Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses »
Harish G Ramaswamy · Shivani Agarwal · Ambuj Tewari -
2013 Poster: Learning with Noisy Labels »
Nagarajan Natarajan · Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2012 Poster: Feature Clustering for Accelerating Parallel Coordinate Descent »
Chad Scherrer · Ambuj Tewari · Mahantesh Halappanavar · David Haglin -
2011 Poster: Greedy Algorithms for Structurally Constrained High Dimensional Problems »
Ambuj Tewari · Pradeep Ravikumar · Inderjit Dhillon -
2011 Poster: On the Universality of Online Mirror Descent »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2011 Invited Talk: Sparsity: algorithms, approximations, and analysis »
Anna Gilbert -
2011 Poster: Nearest Neighbor based Greedy Coordinate Descent »
Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2011 Poster: Online Learning: Stochastic, Constrained, and Smoothed Adversaries »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2011 Poster: Orthogonal Matching Pursuit with Replacement »
Prateek Jain · Ambuj Tewari · Inderjit Dhillon -
2010 Oral: Online Learning: Random Averages, Combinatorial Parameters, and Learnability »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2010 Poster: Online Learning: Random Averages, Combinatorial Parameters, and Learnability »
Sasha Rakhlin · Karthik Sridharan · Ambuj Tewari -
2010 Poster: Smoothness, Low Noise and Fast Rates »
Nati Srebro · Karthik Sridharan · Ambuj Tewari -
2008 Poster: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Spotlight: On the Generalization Ability of Online Strongly Convex Programming Algorithms »
Sham M Kakade · Ambuj Tewari -
2008 Poster: On the Complexity of Linear Prediction: Risk Bounds, Margin Bounds, and Regularization »
Sham M Kakade · Karthik Sridharan · Ambuj Tewari -
2007 Poster: Optimistic Linear Programming gives Logarithmic Regret for Irreducible MDPs »
Ambuj Tewari · Peter Bartlett -
2006 Poster: Sample Complexity of Policy Search with Known Dynamics »
Peter Bartlett · Ambuj Tewari