Poster
Dimensionality Reduction for Stationary Time Series via Stochastic Nonconvex Optimization
Minshuo Chen · Lin Yang · Mengdi Wang · Tuo Zhao

Thu Dec 6th 05:00 -- 07:00 PM @ Room 210 #69

Stochastic optimization naturally arises in machine learning. Efficient algorithms with provable guarantees, however, are still largely missing, when the objective function is nonconvex and the data points are dependent. This paper studies this fundamental challenge through a streaming PCA problem for stationary time series data. Specifically, our goal is to estimate the principle component of time series data with respect to the covariance matrix of the stationary distribution. Computationally, we propose a variant of Oja's algorithm combined with downsampling to control the bias of the stochastic gradient caused by the data dependency. Theoretically, we quantify the uncertainty of our proposed stochastic algorithm based on diffusion approximations. This allows us to prove the asymptotic rate of convergence and further implies near optimal asymptotic sample complexity. Numerical experiments are provided to support our analysis.

Author Information

Minshuo Chen (Georgia Tech)
Lin Yang (Princeton University)
Mengdi Wang (Princeton University)

Mengdi Wang is interested in data-driven stochastic optimization and applications in machine and reinforcement learning. She received her PhD in Electrical Engineering and Computer Science from Massachusetts Institute of Technology in 2013. At MIT, Mengdi was affiliated with the Laboratory for Information and Decision Systems and was advised by Dimitri P. Bertsekas. Mengdi became an assistant professor at Princeton in 2014. She received the Young Researcher Prize in Continuous Optimization of the Mathematical Optimization Society in 2016 (awarded once every three years).

Tuo Zhao (Georgia Tech)

More from the Same Authors