Timezone: »
We introduce the Kronecker factored online Laplace approximation for overcoming catastrophic forgetting in neural networks. The method is grounded in a Bayesian online learning framework, where we recursively approximate the posterior after every task with a Gaussian, leading to a quadratic penalty on changes to the weights. The Laplace approximation requires calculating the Hessian around a mode, which is typically intractable for modern architectures. In order to make our method scalable, we leverage recent block-diagonal Kronecker factored approximations to the curvature. Our algorithm achieves over 90% test accuracy across a sequence of 50 instantiations of the permuted MNIST dataset, substantially outperforming related methods for overcoming catastrophic forgetting.
Author Information
Hippolyt Ritter (University College London)
Aleksandar Botev (University College London)
David Barber (University College London)
More from the Same Authors
-
2021 : Which priors matter? Benchmarking models for learning latent dynamics »
Aleksandar Botev · Andrew Jaegle · Peter Wirnsberger · Daniel Hennes · Irina Higgins -
2021 : Adaptive Optimization with Examplewise Gradients »
Julius Kunze · James Townsend · David Barber -
2022 Poster: Black-box coreset variational inference »
Dionysis Manousakas · Hippolyt Ritter · Theofanis Karaletsos -
2021 Poster: Sparse Uncertainty Representation in Deep Learning with Inducing Weights »
Hippolyt Ritter · Martin Kukla · Cheng Zhang · Yingzhen Li -
2021 Poster: SyMetric: Measuring the Quality of Learnt Hamiltonian Dynamics Inferred from Vision »
Irina Higgins · Peter Wirnsberger · Andrew Jaegle · Aleksandar Botev -
2020 Poster: Disentangling by Subspace Diffusion »
David Pfau · Irina Higgins · Alex Botev · Sébastien Racanière -
2018 Poster: Modular Networks: Learning to Decompose Neural Computation »
Louis Kirsch · Julius Kunze · David Barber -
2018 Poster: Generative Neural Machine Translation »
Harshil Shah · David Barber -
2017 : Poster session »
Xun Zheng · Tim G. J. Rudner · Christopher Tegho · Patrick McClure · Yunhao Tang · ASHWIN D'CRUZ · Juan Camilo Gamboa Higuera · Chandra Sekhar Seelamantula · Jhosimar Arias Figueroa · Andrew Berlin · Maxime Voisin · Alexander Amini · Thang Long Doan · Hengyuan Hu · Aleksandar Botev · Niko Suenderhauf · CHI ZHANG · John Lambert -
2017 Poster: Thinking Fast and Slow with Deep Learning and Tree Search »
Thomas Anthony · Zheng Tian · David Barber -
2017 Poster: Wider and Deeper, Cheaper and Faster: Tensorized LSTMs for Sequence Learning »
Zhen He · Shaobing Gao · Liang Xiao · Daxue Liu · Hangen He · David Barber