Timezone: »
Poster
Data center cooling using model-predictive control
Nevena Lazic · Craig Boutilier · Tyler Lu · Eehern Wong · Binz Roy · Moonkyung Ryu · Greg Imwalle
Despite impressive recent advances in reinforcement learning (RL), its deployment in real-world physical systems is often complicated by unexpected events, limited data, and the potential for expensive failures. In this paper, we describe an application of RL “in the wild” to the task of regulating temperatures and airflow inside a large-scale data center (DC). Adopting a data-driven, model-based approach, we demonstrate that an RL agent with little prior knowledge is able to effectively and safely regulate conditions on a server floor after just a few hours of exploration, while improving operational efficiency relative to existing PID controllers.
Author Information
Nevena Lazic (Google)
Craig Boutilier (Google)
Tyler Lu (Google)
Eehern Wong (Google)
Binz Roy (Google)
Moonkyung Ryu (Google)
Greg Imwalle (Google)
More from the Same Authors
-
2020 Poster: Differentiable Meta-Learning of Bandit Policies »
Craig Boutilier · Chih-wei Hsu · Branislav Kveton · Martin Mladenov · Csaba Szepesvari · Manzil Zaheer -
2020 Poster: Latent Bandits Revisited »
Joey Hong · Branislav Kveton · Manzil Zaheer · Yinlam Chow · Amr Ahmed · Craig Boutilier -
2020 Poster: A Maximum-Entropy Approach to Off-Policy Evaluation in Average-Reward MDPs »
Nevena Lazic · Dong Yin · Mehrdad Farajtabar · Nir Levine · Dilan Gorur · Chris Harris · Dale Schuurmans -
2018 Poster: Non-delusional Q-learning and value-iteration »
Tyler Lu · Dale Schuurmans · Craig Boutilier -
2018 Oral: Non-delusional Q-learning and value-iteration »
Tyler Lu · Dale Schuurmans · Craig Boutilier