Early Stopping for Nonparametric Testing
Meimei Liu · Guang Cheng

Wed Dec 5th 10:45 AM -- 12:45 PM @ Room 517 AB #101

Early stopping of iterative algorithms is an algorithmic regularization method to avoid over-fitting in estimation and classification. In this paper, we show that early stopping can also be applied to obtain the minimax optimal testing in a general non-parametric setup. Specifically, a Wald-type test statistic is obtained based on an iterated estimate produced by functional gradient descent algorithms in a reproducing kernel Hilbert space. A notable contribution is to establish a ``sharp'' stopping rule: when the number of iterations achieves an optimal order, testing optimality is achievable; otherwise, testing optimality becomes impossible. As a by-product, a similar sharpness result is also derived for minimax optimal estimation under early stopping. All obtained results hold for various kernel classes, including Sobolev smoothness classes and Gaussian kernel classes.

Author Information

Meimei Liu (Duke University)
Guang Cheng (Purdue University)

More from the Same Authors