Timezone: »
We propose a method for learning landmark detectors for visual objects (such as the eyes and the nose in a face) without any manual supervision. We cast this as the problem of generating images that combine the appearance of the object as seen in a first example image with the geometry of the object as seen in a second example image, where the two examples differ by a viewpoint change and/or an object deformation. In order to factorize appearance and geometry, we introduce a tight bottleneck in the geometry-extraction process that selects and distils geometry-related features. Compared to standard image generation problems, which often use generative adversarial networks, our generation task is conditioned on both appearance and geometry and thus is significantly less ambiguous, to the point that adopting a simple perceptual loss formulation is sufficient. We demonstrate that our approach can learn object landmarks from synthetic image deformations or videos, all without manual supervision, while outperforming state-of-the-art unsupervised landmark detectors. We further show that our method is applicable to a large variety of datasets - faces, people, 3D objects, and digits - without any modifications.
Author Information
Tomas Jakab (University of Oxford)
Ankush Gupta (University of Oxford)
PhD Student, Visual Geometry Group.
Hakan Bilen (University of Edinburgh)
Andrea Vedaldi (Facebook AI Research and University of Oxford)
More from the Same Authors
-
2022 : Direct LiDAR-based object detector training from automated 2D detections »
Robert McCraith · Eldar Insafutdinov · Lukas Neumann · Andrea Vedaldi -
2022 Spotlight: Lightning Talks 2A-3 »
David Buterez · Chengan He · Xuan Kan · Yutong Lin · Konstantin Schürholt · Yu Yang · Louis Annabi · Wei Dai · Xiaotian Cheng · Alexandre Pitti · Ze Liu · Jon Paul Janet · Jun Saito · Boris Knyazev · Mathias Quoy · Zheng Zhang · James Zachary · Steven J Kiddle · Xavier Giro-i-Nieto · Chang Liu · Hejie Cui · Zilong Zhang · Hakan Bilen · Damian Borth · Dino Oglic · Holly Rushmeier · Han Hu · Xiangyang Ji · Yi Zhou · Nanning Zheng · Ying Guo · Pietro Liò · Stephen Lin · Carl Yang · Yue Cao -
2022 Spotlight: Distilling Representations from GAN Generator via Squeeze and Span »
Yu Yang · Xiaotian Cheng · Chang Liu · Hakan Bilen · Xiangyang Ji -
2022 : Synthesizing Informative Training Samples with GAN »
Bo Zhao · Hakan Bilen -
2022 Poster: Unsupervised Multi-Object Segmentation by Predicting Probable Motion Patterns »
Laurynas Karazija · Subhabrata Choudhury · Iro Laina · Christian Rupprecht · Andrea Vedaldi -
2022 Poster: Distilling Representations from GAN Generator via Squeeze and Span »
Yu Yang · Xiaotian Cheng · Chang Liu · Hakan Bilen · Xiangyang Ji -
2020 Poster: Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning »
Iro Laina · Ruth Fong · Andrea Vedaldi -
2020 Poster: RELATE: Physically Plausible Multi-Object Scene Synthesis Using Structured Latent Spaces »
Sebastien Ehrhardt · Oliver Groth · Aron Monszpart · Martin Engelcke · Ingmar Posner · Niloy Mitra · Andrea Vedaldi -
2019 Poster: Fixing the train-test resolution discrepancy »
Hugo Touvron · Andrea Vedaldi · Matthijs Douze · Herve Jegou -
2018 Poster: Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks »
Jie Hu · Li Shen · Samuel Albanie · Gang Sun · Andrea Vedaldi -
2018 Poster: Modelling and unsupervised learning of symmetric deformable object categories »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2017 Workshop: Interpreting, Explaining and Visualizing Deep Learning - Now what ? »
Klaus-Robert Müller · Andrea Vedaldi · Lars K Hansen · Wojciech Samek · Grégoire Montavon -
2017 Poster: Learning multiple visual domains with residual adapters »
Sylvestre-Alvise Rebuffi · Hakan Bilen · Andrea Vedaldi -
2017 Spotlight: Learning multiple visual domains with residual adapters »
Sylvestre-Alvise Rebuffi · Hakan Bilen · Andrea Vedaldi -
2017 Poster: Unsupervised learning of object frames by dense equivariant image labelling »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2017 Oral: Unsupervised learning of object frames by dense equivariant image labelling »
James Thewlis · Hakan Bilen · Andrea Vedaldi -
2016 Poster: Learning feed-forward one-shot learners »
Luca Bertinetto · João Henriques · Jack Valmadre · Philip Torr · Andrea Vedaldi -
2016 Poster: Integrated perception with recurrent multi-task neural networks »
Hakan Bilen · Andrea Vedaldi -
2013 Poster: Deep Fisher Networks for Large-Scale Image Classification »
Karen Simonyan · Andrea Vedaldi · Andrew Zisserman -
2013 Spotlight: Deep Fisher Networks for Large-Scale Image Classification »
Karen Simonyan · Andrea Vedaldi · Andrew Zisserman -
2011 Poster: Pylon Model for Semantic Segmentation »
Victor Lempitsky · Andrea Vedaldi · Andrew Zisserman -
2010 Poster: Simultaneous Object Detection and Ranking with Weak Supervision »
Matthew B Blaschko · Andrea Vedaldi · Andrew Zisserman -
2009 Poster: Structured output regression for detection with partial truncation »
Andrea Vedaldi · Andrew Zisserman -
2006 Poster: A Rate-Distortion Approach to Joint Pattern Alignment »
Andrea Vedaldi