Timezone: »
Poster
Inexact trust-region algorithms on Riemannian manifolds
Hiroyuki Kasai · Bamdev Mishra
We consider an inexact variant of the popular Riemannian trust-region algorithm for structured big-data minimization problems. The proposed algorithm approximates the gradient and the Hessian in addition to the solution of a trust-region sub-problem. Addressing large-scale finite-sum problems, we specifically propose sub-sampled algorithms with a fixed bound on sub-sampled Hessian and gradient sizes, where the gradient and Hessian are computed by a random sampling technique. Numerical evaluations demonstrate that the proposed algorithms outperform state-of-the-art Riemannian deterministic and stochastic gradient algorithms across different applications.
Author Information
Hiroyuki Kasai (The University of Electro-Communications)
Bamdev Mishra (Microsoft)
More from the Same Authors
-
2022 : Rieoptax: Riemannian Optimization in JAX »
Saiteja Utpala · Andi Han · Pratik Kumar Jawanpuria · Bamdev Mishra -
2021 Poster: On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry »
Andi Han · Bamdev Mishra · Pratik Kumar Jawanpuria · Junbin Gao -
2020 : Poster Session 1 (gather.town) »
Laurent Condat · Tiffany Vlaar · Ohad Shamir · Mohammadi Zaki · Zhize Li · Guan-Horng Liu · Samuel Horváth · Mher Safaryan · Yoni Choukroun · Kumar Shridhar · Nabil Kahale · Jikai Jin · Pratik Kumar Jawanpuria · Gaurav Kumar Yadav · Kazuki Koyama · Junyoung Kim · Xiao Li · Saugata Purkayastha · Adil Salim · Dighanchal Banerjee · Peter Richtarik · Lakshman Mahto · Tian Ye · Bamdev Mishra · Huikang Liu · Jiajie Zhu -
2018 : Stochastic optimization library: SGDLibrary »
Hiroyuki Kasai -
2018 Poster: A Dual Framework for Low-rank Tensor Completion »
Madhav Nimishakavi · Pratik Kumar Jawanpuria · Bamdev Mishra