Timezone: »
Poster
Adding One Neuron Can Eliminate All Bad Local Minima
SHIYU LIANG · Ruoyu Sun · Jason Lee · R. Srikant
One of the main difficulties in analyzing neural networks is the non-convexity of the loss function which may have many bad local minima. In this paper, we study the landscape of neural networks for binary classification tasks. Under mild assumptions, we prove that after adding one special neuron with a skip connection to the output, or one special neuron per layer, every local minimum is a global minimum.
Author Information
SHIYU LIANG (UIUC)
Ruoyu Sun (University of Illinois at Urbana-Champaign)
Jason Lee (University of Southern California)
R. Srikant (University of Illinois at Urbana-Champaign)
More from the Same Authors
-
2020 Poster: Towards a Better Global Loss Landscape of GANs »
Ruoyu Sun · Tiantian Fang · Alexander Schwing -
2020 Oral: Towards a Better Global Loss Landscape of GANs »
Ruoyu Sun · Tiantian Fang · Alexander Schwing -
2020 Poster: A Single-Loop Smoothed Gradient Descent-Ascent Algorithm for Nonconvex-Concave Min-Max Problems »
Jiawei Zhang · Peijun Xiao · Ruoyu Sun · Zhiquan Luo -
2020 Poster: The Mean-Squared Error of Double Q-Learning »
Wentao Weng · Harsh Gupta · Niao He · Lei Ying · R. Srikant -
2019 Poster: Finite-Time Performance Bounds and Adaptive Learning Rate Selection for Two Time-Scale Reinforcement Learning »
Harsh Gupta · R. Srikant · Lei Ying -
2018 Poster: Implicit Bias of Gradient Descent on Linear Convolutional Networks »
Suriya Gunasekar · Jason Lee · Daniel Soudry · Nati Srebro -
2018 Poster: Algorithmic Regularization in Learning Deep Homogeneous Models: Layers are Automatically Balanced »
Simon Du · Wei Hu · Jason Lee -
2018 Poster: Provably Correct Automatic Sub-Differentiation for Qualified Programs »
Sham Kakade · Jason Lee -
2018 Poster: On the Convergence and Robustness of Training GANs with Regularized Optimal Transport »
Maziar Sanjabi · Jimmy Ba · Meisam Razaviyayn · Jason Lee -
2017 Poster: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2017 Spotlight: Gradient Descent Can Take Exponential Time to Escape Saddle Points »
Simon Du · Chi Jin · Jason D Lee · Michael Jordan · Aarti Singh · Barnabas Poczos -
2016 Oral: Matrix Completion has No Spurious Local Minimum »
Rong Ge · Jason Lee · Tengyu Ma -
2016 Poster: Matrix Completion has No Spurious Local Minimum »
Rong Ge · Jason Lee · Tengyu Ma -
2015 Poster: Algorithms with Logarithmic or Sublinear Regret for Constrained Contextual Bandits »
Huasen Wu · R. Srikant · Xin Liu · Chong Jiang -
2015 Poster: Evaluating the statistical significance of biclusters »
Jason D Lee · Yuekai Sun · Jonathan E Taylor -
2014 Poster: Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices »
Austin Benson · Jason D Lee · Bartek Rajwa · David F Gleich -
2014 Spotlight: Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices »
Austin Benson · Jason D Lee · Bartek Rajwa · David F Gleich -
2014 Poster: Exact Post Model Selection Inference for Marginal Screening »
Jason D Lee · Jonathan E Taylor -
2013 Poster: On model selection consistency of penalized M-estimators: a geometric theory »
Jason D Lee · Yuekai Sun · Jonathan E Taylor -
2013 Poster: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2013 Spotlight: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2012 Poster: Proximal Newton-type Methods for Minimizing Convex Objective Functions in Composite Form »
Jason D Lee · Yuekai Sun · Michael Saunders -
2010 Poster: Practical Large-Scale Optimization for Max-norm Regularization »
Jason D Lee · Benjamin Recht · Russ Salakhutdinov · Nati Srebro · Joel A Tropp