Exponentiated Strongly Rayleigh Distributions
Zelda Mariet · Suvrit Sra · Stefanie Jegelka

Wed Dec 5th 10:45 AM -- 12:45 PM @ Room 210 #2

Strongly Rayleigh (SR) measures are discrete probability distributions over the subsets of a ground set. They enjoy strong negative dependence properties, as a result of which they assign higher probability to subsets of diverse elements. We introduce in this paper Exponentiated Strongly Rayleigh (ESR) measures, which sharpen (or smoothen) the negative dependence property of SR measures via a single parameter (the exponent) that can intuitively understood as an inverse temperature. We develop efficient MCMC procedures for approximate sampling from ESRs, and obtain explicit mixing time bounds for two concrete instances: exponentiated versions of Determinantal Point Processes and Dual Volume Sampling. We illustrate some of the potential of ESRs, by applying them to a few machine learning tasks; empirical results confirm that beyond their theoretical appeal, ESR-based models hold significant promise for these tasks.

Author Information

Zelda Mariet (MIT)
Suvrit Sra (MIT)

Suvrit Sra is a faculty member within the EECS department at MIT, where he is also a core faculty member of IDSS, LIDS, MIT-ML Group, as well as the statistics and data science center. His research spans topics in optimization, matrix theory, differential geometry, and probability theory, which he connects with machine learning --- a key focus of his research is on the theme "Optimization for Machine Learning” (

Stefanie Jegelka (MIT)

Stefanie Jegelka is an X-Consortium Career Development Assistant Professor in the Department of EECS at MIT. She is a member of the Computer Science and AI Lab (CSAIL), the Center for Statistics and an affiliate of the Institute for Data, Systems and Society and the Operations Research Center. Before joining MIT, she was a postdoctoral researcher at UC Berkeley, and obtained her PhD from ETH Zurich and the Max Planck Institute for Intelligent Systems. Stefanie has received a Sloan Research Fellowship, an NSF CAREER Award, a DARPA Young Faculty Award, the German Pattern Recognition Award and a Best Paper Award at the International Conference for Machine Learning (ICML). Her research interests span the theory and practice of algorithmic machine learning.

More from the Same Authors