Timezone: »
Finding minimum distortion of adversarial examples and thus certifying robustness in neural networks classifiers is known to be a challenging problem. Nevertheless, recently it has been shown to be possible to give a non-trivial certified lower bound of minimum distortion, and some recent progress has been made towards this direction by exploiting the piece-wise linear nature of ReLU activations. However, a generic robustness certification for \textit{general} activation functions still remains largely unexplored. To address this issue, in this paper we introduce CROWN, a general framework to certify robustness of neural networks with general activation functions. The novelty in our algorithm consists of bounding a given activation function with linear and quadratic functions, hence allowing it to tackle general activation functions including but not limited to the four popular choices: ReLU, tanh, sigmoid and arctan. In addition, we facilitate the search for a tighter certified lower bound by \textit{adaptively} selecting appropriate surrogates for each neuron activation. Experimental results show that CROWN on ReLU networks can notably improve the certified lower bounds compared to the current state-of-the-art algorithm Fast-Lin, while having comparable computational efficiency. Furthermore, CROWN also demonstrates its effectiveness and flexibility on networks with general activation functions, including tanh, sigmoid and arctan.
Author Information
Huan Zhang (UCLA)
Tsui-Wei Weng (MIT)
Pin-Yu Chen (IBM Research AI)
Cho-Jui Hsieh (UCLA, Google Research)
Luca Daniel (MIT)
More from the Same Authors
-
2020 : Paper 10: Certified Interpretability Robustness for Class Activation Mapping »
Alex Gu · Tsui-Wei Weng · Pin-Yu Chen · Sijia Liu · Luca Daniel -
2021 : Certified Robustness for Free in Differentially Private Federated Learning »
Chulin Xie · Yunhui Long · Pin-Yu Chen · Krishnaram Kenthapadi · Bo Li -
2021 : MAML is a Noisy Contrastive Learner »
Chia-Hsiang Kao · Wei-Chen Chiu · Pin-Yu Chen -
2021 : QTN-VQC: An End-to-End Learning Framework for Quantum Neural Networks »
Jun Qi · Huck Yang · Pin-Yu Chen -
2021 : Pessimistic Model Selection for Offline Deep Reinforcement Learning »
Huck Yang · Yifan Cui · Pin-Yu Chen -
2022 : Visual Prompting for Adversarial Robustness »
Aochuan Chen · Peter Lorenz · Yuguang Yao · Pin-Yu Chen · Sijia Liu -
2022 : Do Domain Generalization Methods Generalize Well? »
Akshay Mehra · Bhavya Kailkhura · Pin-Yu Chen · Jihun Hamm -
2022 : On the Adversarial Robustness of Vision Transformers »
Rulin Shao · Zhouxing Shi · Jinfeng Yi · Pin-Yu Chen · Cho-Jui Hsieh -
2022 : Panel »
Pin-Yu Chen · Alex Gittens · Bo Li · Celia Cintas · Hilde Kuehne · Payel Das -
2022 : Q & A »
Sayak Paul · Sijia Liu · Pin-Yu Chen -
2022 : Deep dive on foundation models for computer vision »
Pin-Yu Chen -
2022 Tutorial: Foundational Robustness of Foundation Models »
Pin-Yu Chen · Sijia Liu · Sayak Paul -
2022 : Basics in foundation model and robustness »
Pin-Yu Chen · Sijia Liu -
2021 Workshop: New Frontiers in Federated Learning: Privacy, Fairness, Robustness, Personalization and Data Ownership »
Nghia Hoang · Lam Nguyen · Pin-Yu Chen · Tsui-Wei Weng · Sara Magliacane · Bryan Kian Hsiang Low · Anoop Deoras -
2021 Poster: Predicting Deep Neural Network Generalization with Perturbation Response Curves »
Yair Schiff · Brian Quanz · Payel Das · Pin-Yu Chen -
2021 Poster: Robust Deep Reinforcement Learning through Adversarial Loss »
Tuomas Oikarinen · Wang Zhang · Alexandre Megretski · Luca Daniel · Tsui-Wei Weng -
2021 Poster: On the Equivalence between Neural Network and Support Vector Machine »
Yilan Chen · Wei Huang · Lam Nguyen · Tsui-Wei Weng -
2021 Poster: Mean-based Best Arm Identification in Stochastic Bandits under Reward Contamination »
Arpan Mukherjee · Ali Tajer · Pin-Yu Chen · Payel Das -
2021 Poster: Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Sparse Neural Networks »
Shuai Zhang · Meng Wang · Sijia Liu · Pin-Yu Chen · Jinjun Xiong -
2021 Poster: CAFE: Catastrophic Data Leakage in Vertical Federated Learning »
Xiao Jin · Pin-Yu Chen · Chia-Yi Hsu · Chia-Mu Yu · Tianyi Chen -
2021 Poster: Adversarial Attack Generation Empowered by Min-Max Optimization »
Jingkang Wang · Tianyun Zhang · Sijia Liu · Pin-Yu Chen · Jiacen Xu · Makan Fardad · Bo Li -
2021 : Live Q&A session: MAML is a Noisy Contrastive Learner »
Chia-Hsiang Kao · Wei-Chen Chiu · Pin-Yu Chen -
2021 : Contributed Talk (Oral): MAML is a Noisy Contrastive Learner »
Chia-Hsiang Kao · Wei-Chen Chiu · Pin-Yu Chen -
2021 : SenSE: A Toolkit for Semantic Change Exploration via Word Embedding Alignment »
MaurĂcio Gruppi · Sibel Adali · Pin-Yu Chen -
2021 Poster: When does Contrastive Learning Preserve Adversarial Robustness from Pretraining to Finetuning? »
Lijie Fan · Sijia Liu · Pin-Yu Chen · Gaoyuan Zhang · Chuang Gan -
2021 Poster: Formalizing Generalization and Adversarial Robustness of Neural Networks to Weight Perturbations »
Yu-Lin Tsai · Chia-Yi Hsu · Chia-Mu Yu · Pin-Yu Chen -
2021 Poster: Understanding the Limits of Unsupervised Domain Adaptation via Data Poisoning »
Akshay Mehra · Bhavya Kailkhura · Pin-Yu Chen · Jihun Hamm -
2020 Poster: ScaleCom: Scalable Sparsified Gradient Compression for Communication-Efficient Distributed Training »
Chia-Yu Chen · Jiamin Ni · Songtao Lu · Xiaodong Cui · Pin-Yu Chen · Xiao Sun · Naigang Wang · Swagath Venkataramani · Vijayalakshmi (Viji) Srinivasan · Wei Zhang · Kailash Gopalakrishnan -
2020 Poster: Higher-Order Certification For Randomized Smoothing »
Jeet Mohapatra · Ching-Yun Ko · Tsui-Wei Weng · Pin-Yu Chen · Sijia Liu · Luca Daniel -
2020 Poster: Optimizing Mode Connectivity via Neuron Alignment »
Norman J Tatro · Pin-Yu Chen · Payel Das · Igor Melnyk · Prasanna Sattigeri · Rongjie Lai -
2020 Spotlight: Higher-Order Certification For Randomized Smoothing »
Jeet Mohapatra · Ching-Yun Ko · Tsui-Wei Weng · Pin-Yu Chen · Sijia Liu · Luca Daniel -
2019 : Poster Session »
Ahana Ghosh · Javad Shafiee · Akhilan Boopathy · Alex Tamkin · Theodoros Vasiloudis · Vedant Nanda · Ali Baheri · Paul Fieguth · Andrew Bennett · Guanya Shi · Hao Liu · Arushi Jain · Jacob Tyo · Benjie Wang · Boxiao Chen · Carroll Wainwright · Chandramouli Shama Sastry · Chao Tang · Daniel S. Brown · David Inouye · David Venuto · Dhruv Ramani · Dimitrios Diochnos · Divyam Madaan · Dmitrii Krashenikov · Joel Oren · Doyup Lee · Eleanor Quint · elmira amirloo · Matteo Pirotta · Gavin Hartnett · Geoffroy Dubourg-Felonneau · Gokul Swamy · Pin-Yu Chen · Ilija Bogunovic · Jason Carter · Javier Garcia-Barcos · Jeet Mohapatra · Jesse Zhang · Jian Qian · John Martin · Oliver Richter · Federico Zaiter · Tsui-Wei Weng · Karthik Abinav Sankararaman · Kyriakos Polymenakos · Lan Hoang · mahdieh abbasi · Marco Gallieri · Mathieu Seurin · Matteo Papini · Matteo Turchetta · Matthew Sotoudeh · Mehrdad Hosseinzadeh · Nathan Fulton · Masatoshi Uehara · Niranjani Prasad · Oana-Maria Camburu · Patrik Kolaric · Philipp Renz · Prateek Jaiswal · Reazul Hasan Russel · Riashat Islam · Rishabh Agarwal · Alexander Aldrick · Sachin Vernekar · Sahin Lale · Sai Kiran Narayanaswami · Samuel Daulton · Sanjam Garg · Sebastian East · Shun Zhang · Soheil Dsidbari · Justin Goodwin · Victoria Krakovna · Wenhao Luo · Wesley Chung · Yuanyuan Shi · Yuh-Shyang Wang · Hongwei Jin · Ziping Xu -
2019 Poster: A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks »
Hadi Salman · Greg Yang · Huan Zhang · Cho-Jui Hsieh · Pengchuan Zhang -
2019 Poster: Robustness Verification of Tree-based Models »
Hongge Chen · Huan Zhang · Si Si · Yang Li · Duane Boning · Cho-Jui Hsieh -
2018 Poster: Learning from Group Comparisons: Exploiting Higher Order Interactions »
Yao Li · Minhao Cheng · Kevin Fujii · Fushing Hsieh · Cho-Jui Hsieh -
2018 Poster: Zeroth-Order Stochastic Variance Reduction for Nonconvex Optimization »
Sijia Liu · Bhavya Kailkhura · Pin-Yu Chen · Paishun Ting · Shiyu Chang · Lisa Amini -
2018 Poster: Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives »
Amit Dhurandhar · Pin-Yu Chen · Ronny Luss · Chun-Chen Tu · Paishun Ting · Karthikeyan Shanmugam · Payel Das -
2018 Poster: GroupReduce: Block-Wise Low-Rank Approximation for Neural Language Model Shrinking »
Patrick Chen · Si Si · Yang Li · Ciprian Chelba · Cho-Jui Hsieh