Poster
Learning in Games with Lossy Feedback
Zhengyuan Zhou · Panayotis Mertikopoulos · Susan Athey · Nicholas Bambos · Peter W Glynn · Yinyu Ye

Wed Dec 5th 10:45 AM -- 12:45 PM @ Room 210 #75

We consider a game-theoretical multi-agent learning problem where the feedback information can be lost during the learning process and rewards are given by a broad class of games known as variationally stable games. We propose a simple variant of the classical online gradient descent algorithm, called reweighted online gradient descent (ROGD) and show that in variationally stable games, if each agent adopts ROGD, then almost sure convergence to the set of Nash equilibria is guaranteed, even when the feedback loss is asynchronous and arbitrarily corrrelated among agents. We then extend the framework to deal with unknown feedback loss probabilities by using an estimator (constructed from past data) in its replacement. Finally, we further extend the framework to accomodate both asynchronous loss and stochastic rewards and establish that multi-agent ROGD learning still converges to the set of Nash equilibria in such settings. Together, these results contribute to the broad lanscape of multi-agent online learning by significantly relaxing the feedback information that is required to achieve desirable outcomes.

Author Information

Zhengyuan Zhou (Stanford University)
Panayotis Mertikopoulos (CNRS (French National Center for Scientific Research))
Susan Athey (Stanford University)
Nicholas Bambos
Peter W Glynn (Stanford University)

Peter W. Glynn is the Thomas Ford Professor in the Department of Management Science and Engineering (MS&E) at Stanford University, and also holds a courtesy appointment in the Department of Electrical Engineering. He received his Ph.D in Operations Research from Stanford University in 1982. He then joined the faculty of the University of Wisconsin at Madison, where he held a joint appointment between the Industrial Engineering Department and Mathematics Research Center, and courtesy appointments in Computer Science and Mathematics. In 1987, he returned to Stanford, where he joined the Department of Operations Research. He was Director of Stanford's Institute for Computational and Mathematical Engineering from 2006 until 2010 and served as Chair of MS&E from 2011 through 2015. He is a Fellow of INFORMS and a Fellow of the Institute of Mathematical Statistics, and was an IMS Medallion Lecturer in 1995 and INFORMS Markov Lecturer in 2014. He was co-winner of the Outstanding Publication Awards from the INFORMS Simulation Society in 1993, 2008, and 2016, was a co-winner of the Best (Biannual) Publication Award from the INFORMS Applied Probability Society in 2009, and was the co-winner of the John von Neumann Theory Prize from INFORMS in 2010. In 2012, he was elected to the National Academy of Engineering. He was Founding Editor-in-Chief of Stochastic Systems and is currently Editor-in-Chief of Journal of Applied Probability and Advances in Applied Probability. His research interests lie in simulation, computational probability, queueing theory, statistical inference for stochastic processes, and stochastic modeling.

Yinyu Ye

More from the Same Authors