Timezone: »
Poster
Sample Efficient Stochastic Gradient Iterative Hard Thresholding Method for Stochastic Sparse Linear Regression with Limited Attribute Observation
Tomoya Murata · Taiji Suzuki
We develop new stochastic gradient methods for efficiently solving sparse linear regression in a partial attribute observation setting, where learners are only allowed to observe a fixed number of actively chosen attributes per example at training and prediction times. It is shown that the methods achieve essentially a sample complexity of $O(1/\varepsilon)$ to attain an error of $\varepsilon$ under a variant of restricted eigenvalue condition, and the rate has better dependency on the problem dimension than existing methods. Particularly, if the smallest magnitude of the non-zero components of the optimal solution is not too small, the rate of our proposed {\it Hybrid} algorithm can be boosted to near the minimax optimal sample complexity of {\it full information} algorithms. The core ideas are (i) efficient construction of an unbiased gradient estimator by the iterative usage of the hard thresholding operator for configuring an exploration algorithm; and (ii) an adaptive combination of the exploration and an exploitation algorithms for quickly identifying the support of the optimum and efficiently searching the optimal parameter in its support. Experimental results are presented to validate our theoretical findings and the superiority of our proposed methods.
Author Information
Tomoya Murata (NTT DATA Mathematical Systems Inc.)
Taiji Suzuki (The University of Tokyo/JST-PRESTO/RIKEN)
More from the Same Authors
-
2021 Spotlight: Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic Besov space »
Taiji Suzuki · Atsushi Nitanda -
2022 Poster: Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD for Communication Efficient Nonconvex Distributed Learning »
Tomoya Murata · Taiji Suzuki -
2022 : Reducing Communication in Nonconvex Federated Learning with a Novel Single-Loop Variance Reduction Method »
Kazusato Oko · Shunta Akiyama · Tomoya Murata · Taiji Suzuki -
2023 Poster: Feature learning via mean-field Langevin dynamics: classifying sparse parities and beyond »
Taiji Suzuki · Denny Wu · Kazusato Oko · Atsushi Nitanda -
2023 Poster: Learning in the Presence of Low-dimensional Structure: A Spiked Random Matrix Perspective »
Jimmy Ba · Murat Erdogdu · Taiji Suzuki · Zhichao Wang · Denny Wu -
2023 Poster: Gradient-Based Feature Learning under Structured Data »
Alireza Mousavi-Hosseini · Denny Wu · Taiji Suzuki · Murat Erdogdu -
2023 Poster: Mean-field Langevin dynamics: Time-space discretization, stochastic gradient, and variance reduction »
Taiji Suzuki · Denny Wu · Atsushi Nitanda -
2022 Spotlight: Lightning Talks 4A-2 »
Barakeel Fanseu Kamhoua · Hualin Zhang · Taiki Miyagawa · Tomoya Murata · Xin Lyu · Yan Dai · Elena Grigorescu · Zhipeng Tu · Lijun Zhang · Taiji Suzuki · Wei Jiang · Haipeng Luo · Lin Zhang · Xi Wang · Young-San Lin · Huan Xiong · Liyu Chen · Bin Gu · Jinfeng Yi · Yongqiang Chen · Sandeep Silwal · Yiguang Hong · Maoyuan Song · Lei Wang · Tianbao Yang · Han Yang · MA Kaili · Samson Zhou · Deming Yuan · Bo Han · Guodong Shi · Bo Li · James Cheng -
2022 Spotlight: Escaping Saddle Points with Bias-Variance Reduced Local Perturbed SGD for Communication Efficient Nonconvex Distributed Learning »
Tomoya Murata · Taiji Suzuki -
2022 Poster: High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation »
Jimmy Ba · Murat Erdogdu · Taiji Suzuki · Zhichao Wang · Denny Wu · Greg Yang -
2022 Poster: Two-layer neural network on infinite dimensional data: global optimization guarantee in the mean-field regime »
Naoki Nishikawa · Taiji Suzuki · Atsushi Nitanda · Denny Wu -
2022 Poster: Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with Variance Reduction and its Application to Optimization »
Yuri Kinoshita · Taiji Suzuki -
2021 Poster: Differentiable Multiple Shooting Layers »
Stefano Massaroli · Michael Poli · Sho Sonoda · Taiji Suzuki · Jinkyoo Park · Atsushi Yamashita · Hajime Asama -
2021 Poster: Particle Dual Averaging: Optimization of Mean Field Neural Network with Global Convergence Rate Analysis »
Atsushi Nitanda · Denny Wu · Taiji Suzuki -
2021 Poster: Deep learning is adaptive to intrinsic dimensionality of model smoothness in anisotropic Besov space »
Taiji Suzuki · Atsushi Nitanda -
2020 Poster: Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks »
Kenta Oono · Taiji Suzuki -
2020 Poster: Generalization bound of globally optimal non-convex neural network training: Transportation map estimation by infinite dimensional Langevin dynamics »
Taiji Suzuki -
2020 Spotlight: Generalization bound of globally optimal non-convex neural network training: Transportation map estimation by infinite dimensional Langevin dynamics »
Taiji Suzuki -
2017 Poster: Doubly Accelerated Stochastic Variance Reduced Dual Averaging Method for Regularized Empirical Risk Minimization »
Tomoya Murata · Taiji Suzuki -
2017 Poster: Trimmed Density Ratio Estimation »
Song Liu · Akiko Takeda · Taiji Suzuki · Kenji Fukumizu -
2016 Poster: Minimax Optimal Alternating Minimization for Kernel Nonparametric Tensor Learning »
Taiji Suzuki · Heishiro Kanagawa · Hayato Kobayashi · Nobuyuki Shimizu · Yukihiro Tagami -
2013 Poster: Convex Tensor Decomposition via Structured Schatten Norm Regularization »
Ryota Tomioka · Taiji Suzuki -
2012 Poster: Density-Difference Estimation »
Masashi Sugiyama · Takafumi Kanamori · Taiji Suzuki · Marthinus C du Plessis · Song Liu · Ichiro Takeuchi -
2011 Poster: Relative Density-Ratio Estimation for Robust Distribution Comparison »
Makoto Yamada · Taiji Suzuki · Takafumi Kanamori · Hirotaka Hachiya · Masashi Sugiyama -
2011 Poster: Statistical Performance of Convex Tensor Decomposition »
Ryota Tomioka · Taiji Suzuki · Kohei Hayashi · Hisashi Kashima -
2011 Poster: Unifying Framework for Fast Learning Rate of Non-Sparse Multiple Kernel Learning »
Taiji Suzuki