Timezone: »
Many applications of machine learning involve the analysis of large data frames -- matrices collecting heterogeneous measurements (binary, numerical, counts, etc.) across samples -- with missing values. Low-rank models, as studied by Udell et al. (2016), are popular in this framework for tasks such as visualization, clustering and missing value imputation. Yet, available methods with statistical guarantees and efficient optimization do not allow explicit modeling of main additive effects such as row and column, or covariate effects. In this paper, we introduce a low-rank interaction and sparse additive effects (LORIS) model which combines matrix regression on a dictionary and low-rank design, to estimate main effects and interactions simultaneously. We provide statistical guarantees in the form of upper bounds on the estimation error of both components. Then, we introduce a mixed coordinate gradient descent (MCGD) method which provably converges sub-linearly to an optimal solution and is computationally efficient for large scale data sets. We show on simulated and survey data that the method has a clear advantage over current practices.
Author Information
Geneviève Robin (École Polytechnique)
Hoi-To Wai (The Chinese University of Hong Kong)
Julie Josse (École Polytechnique)
Olga Klopp (Université Paris Ouest)
Eric Moulines (Ecole Polytechnique)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Spotlight: Low-rank Interaction with Sparse Additive Effects Model for Large Data Frames »
Thu. Dec 6th 08:45 -- 08:50 PM Room Room 517 CD
More from the Same Authors
-
2022 : Distributional deep Q-learning with CVaR regression »
Mastane Achab · REDA ALAMI · YASSER ABDELAZIZ DAHOU DJILALI · Kirill Fedyanin · Eric Moulines · Maxim Panov -
2023 Poster: First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities »
Aleksandr Beznosikov · Sergey Samsonov · Marina Sheshukova · Alexander Gasnikov · Alexey Naumov · Eric Moulines -
2023 Poster: Model-free Posterior Sampling via Learning Rate Randomization »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Pierre Perrault · Michal Valko · Pierre Ménard -
2022 Spotlight: Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Mark Rowland · Michal Valko · Pierre Ménard -
2022 Poster: Optimistic Posterior Sampling for Reinforcement Learning with Few Samples and Tight Guarantees »
Daniil Tiapkin · Denis Belomestny · Daniele Calandriello · Eric Moulines · Remi Munos · Alexey Naumov · Mark Rowland · Michal Valko · Pierre Ménard -
2022 Poster: Local-Global MCMC kernels: the best of both worlds »
Sergey Samsonov · Evgeny Lagutin · Marylou Gabrié · Alain Durmus · Alexey Naumov · Eric Moulines -
2022 Poster: BR-SNIS: Bias Reduced Self-Normalized Importance Sampling »
Gabriel Cardoso · Sergey Samsonov · Achille Thin · Eric Moulines · Jimmy Olsson -
2022 Poster: FedPop: A Bayesian Approach for Personalised Federated Learning »
Nikita Kotelevskii · Maxime Vono · Alain Durmus · Eric Moulines -
2021 Poster: A Near-Optimal Algorithm for Stochastic Bilevel Optimization via Double-Momentum »
Prashant Khanduri · Siliang Zeng · Mingyi Hong · Hoi-To Wai · Zhaoran Wang · Zhuoran Yang -
2021 Poster: Federated-EM with heterogeneity mitigation and variance reduction »
Aymeric Dieuleveut · Gersende Fort · Eric Moulines · Geneviève Robin -
2021 Poster: NEO: Non Equilibrium Sampling on the Orbits of a Deterministic Transform »
Achille Thin · Yazid Janati El Idrissi · Sylvain Le Corff · Charles Ollion · Eric Moulines · Arnaud Doucet · Alain Durmus · Christian X Robert -
2021 Poster: Optimality of variational inference for stochasticblock model with missing links »
Solenne Gaucher · Olga Klopp -
2021 Poster: Tight High Probability Bounds for Linear Stochastic Approximation with Fixed Stepsize »
Alain Durmus · Eric Moulines · Alexey Naumov · Sergey Samsonov · Kevin Scaman · Hoi-To Wai -
2020 Poster: A Stochastic Path Integral Differential EstimatoR Expectation Maximization Algorithm »
Gersende Fort · Eric Moulines · Hoi-To Wai -
2019 Poster: On the Global Convergence of (Fast) Incremental Expectation Maximization Methods »
Belhal Karimi · Hoi-To Wai · Eric Moulines · Marc Lavielle -
2018 Poster: The promises and pitfalls of Stochastic Gradient Langevin Dynamics »
Nicolas Brosse · Alain Durmus · Eric Moulines -
2018 Poster: Multi-Agent Reinforcement Learning via Double Averaging Primal-Dual Optimization »
Hoi-To Wai · Zhuoran Yang · Zhaoran Wang · Mingyi Hong -
2016 : Olga Klopp. Network models and sparse graphon estimation. »
Olga Klopp