Timezone: »
Poster
Learning convex polytopes with margin
Lee-Ad Gottlieb · Eran Kaufman · Aryeh Kontorovich · Gabriel Nivasch
We present improved algorithm for properly learning convex polytopes in the realizable PAC setting from data with a margin. Our learning algorithm constructs a consistent polytope as an intersection of about t log t halfspaces with margins in time polynomial in t (where t is the number of halfspaces forming an optimal polytope). We also identify distinct generalizations of the notion of margin from hyperplanes to polytopes and investigate how they relate geometrically; this result may be of interest beyond the learning setting.
Author Information
Lee-Ad Gottlieb (Ariel University)
Eran Kaufman (Ariel University)
Aryeh Kontorovich (Ben Gurion University)
Gabriel Nivasch (Ariel University)
More from the Same Authors
-
2021 Poster: Dimension-free empirical entropy estimation »
Doron Cohen · Aryeh Kontorovich · Aaron Koolyk · Geoffrey Wolfer -
2020 Poster: Learning discrete distributions with infinite support »
Doron Cohen · Aryeh Kontorovich · Geoffrey Wolfer -
2017 Poster: Nearest-Neighbor Sample Compression: Efficiency, Consistency, Infinite Dimensions »
Aryeh Kontorovich · Sivan Sabato · Roi Weiss -
2016 Poster: Active Nearest-Neighbor Learning in Metric Spaces »
Aryeh Kontorovich · Sivan Sabato · Ruth Urner -
2015 Poster: Mixing Time Estimation in Reversible Markov Chains from a Single Sample Path »
Daniel Hsu · Aryeh Kontorovich · Csaba Szepesvari -
2014 Poster: Near-optimal sample compression for nearest neighbors »
Lee-Ad Gottlieb · Aryeh Kontorovich · Pinhas Nisnevitch -
2014 Poster: Consistency of weighted majority votes »
Daniel Berend · Aryeh Kontorovich -
2013 Poster: Predictive PAC Learning and Process Decompositions »
Cosma Shalizi · Aryeh Kontorovich