Timezone: »
Multitask learning has shown promising performance in many applications and many multitask models have been proposed. In order to identify an effective multitask model for a given multitask problem, we propose a learning framework called Learning to MultiTask (L2MT). To achieve the goal, L2MT exploits historical multitask experience which is organized as a training set consisting of several tuples, each of which contains a multitask problem with multiple tasks, a multitask model, and the relative test error. Based on such training set, L2MT first uses a proposed layerwise graph neural network to learn task embeddings for all the tasks in a multitask problem and then learns an estimation function to estimate the relative test error based on task embeddings and the representation of the multitask model based on a unified formulation. Given a new multitask problem, the estimation function is used to identify a suitable multitask model. Experiments on benchmark datasets show the effectiveness of the proposed L2MT framework.
Author Information
Yu Zhang (HKUST)
Ying Wei (Tencent AI Lab)
Qiang Yang (Hong Kong University of Science and Technology)
More from the Same Authors
-
2022 Spotlight: Adversarial Task Up-sampling for Meta-learning »
Yichen WU · Long-Kai Huang · Ying Wei -
2022 Spotlight: Lightning Talks 1B-3 »
Chaofei Wang · Qixun Wang · Jing Xu · Long-Kai Huang · Xi Weng · Fei Ye · Harsh Rangwani · shrinivas ramasubramanian · Yifei Wang · Qisen Yang · Xu Luo · Lei Huang · Adrian G. Bors · Ying Wei · Xinglin Pan · Sho Takemori · Hong Zhu · Rui Huang · Lei Zhao · Yisen Wang · Kato Takashi · Shiji Song · Yanan Li · Rao Anwer · Yuhei Umeda · Salman Khan · Gao Huang · Wenjie Pei · Fahad Shahbaz Khan · Venkatesh Babu R · Zenglin Xu -
2022 Spotlight: Improving Task-Specific Generalization in Few-Shot Learning via Adaptive Vicinal Risk Minimization »
Long-Kai Huang · Ying Wei -
2022 Poster: Improving Task-Specific Generalization in Few-Shot Learning via Adaptive Vicinal Risk Minimization »
Long-Kai Huang · Ying Wei -
2022 Poster: Adversarial Task Up-sampling for Meta-learning »
Yichen WU · Long-Kai Huang · Ying Wei -
2022 Poster: GRASP: Navigating Retrosynthetic Planning with Goal-driven Policy »
Yemin Yu · Ying Wei · Kun Kuang · Zhengxing Huang · Huaxiu Yao · Fei Wu -
2022 Poster: Dynamic Sparse Network for Time Series Classification: Learning What to “See” »
Qiao Xiao · Boqian Wu · Yu Zhang · Shiwei Liu · Mykola Pechenizkiy · Elena Mocanu · Decebal Constantin Mocanu -
2021 Poster: Functionally Regionalized Knowledge Transfer for Low-resource Drug Discovery »
Huaxiu Yao · Ying Wei · Long-Kai Huang · Ding Xue · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Poster: Effective Meta-Regularization by Kernelized Proximal Regularization »
Weisen Jiang · James Kwok · Yu Zhang -
2021 Poster: Meta-learning with an Adaptive Task Scheduler »
Huaxiu Yao · Yu Wang · Ying Wei · Peilin Zhao · Mehrdad Mahdavi · Defu Lian · Chelsea Finn -
2021 Poster: Multi-Objective Meta Learning »
Feiyang YE · Baijiong Lin · Zhixiong Yue · Pengxin Guo · Qiao Xiao · Yu Zhang -
2020 Poster: Graph Random Neural Networks for Semi-Supervised Learning on Graphs »
Wenzheng Feng · Jie Zhang · Yuxiao Dong · Yu Han · Huanbo Luan · Qian Xu · Qiang Yang · Evgeny Kharlamov · Jie Tang -
2020 Oral: Graph Random Neural Networks for Semi-Supervised Learning on Graphs »
Wenzheng Feng · Jie Zhang · Yuxiao Dong · Yu Han · Huanbo Luan · Qian Xu · Qiang Yang · Evgeny Kharlamov · Jie Tang -
2020 Poster: Self-Supervised Graph Transformer on Large-Scale Molecular Data »
Yu Rong · Yatao Bian · Tingyang Xu · Weiyang Xie · Ying Wei · Wenbing Huang · Junzhou Huang -
2020 Poster: Adversarial Sparse Transformer for Time Series Forecasting »
Sifan Wu · Xi Xiao · Qianggang Ding · Peilin Zhao · Ying Wei · Junzhou Huang -
2019 : Coffee/Poster session 1 »
Shiro Takagi · Khurram Javed · Johanna Sommer · Amr Sharaf · Pierluca D'Oro · Ying Wei · Sivan Doveh · Colin White · Santiago Gonzalez · Cuong Nguyen · Mao Li · Tianhe Yu · Tiago Ramalho · Masahiro Nomura · Ahsan Alvi · Jean-Francois Ton · W. Ronny Huang · Jessica Lee · Sebastian Flennerhag · Michael Zhang · Abram Friesen · Paul Blomstedt · Alina Dubatovka · Sergey Bartunov · Subin Yi · Iaroslav Shcherbatyi · Christian Simon · Zeyuan Shang · David MacLeod · Lu Liu · Liam Fowl · Diego Mesquita · Deirdre Quillen -
2019 : Federated Learning for Recommendation Systems »
Qiang Yang -
2015 : Transitive Transfer Learning »
Qiang Yang -
2012 Poster: Action-Model Based Multi-agent Plan Recognition »
Hankz Hankui Zhuo · Qiang Yang · Subbarao Kambhampati -
2009 Workshop: Transfer Learning for Structured Data »
Sinno Jialin Pan · Ivor W Tsang · Le Song · Karsten Borgwardt · Qiang Yang -
2008 Poster: Translated Learning »
Wenyuan Dai · Yuqiang Chen · Gui-Rong Xue · Qiang Yang · Yong Yu -
2008 Spotlight: Translated Learning »
Wenyuan Dai · Yuqiang Chen · Gui-Rong Xue · Qiang Yang · Yong Yu