Timezone: »
Applications of optimal transport have recently gained remarkable attention as a result of the computational advantages of entropic regularization. However, in most situations the Sinkhorn approximation to the Wasserstein distance is replaced by a regularized version that is less accurate but easy to differentiate. In this work we characterize the differential properties of the original Sinkhorn approximation, proving that it enjoys the same smoothness as its regularized version and we explicitly provide an efficient algorithm to compute its gradient. We show that this result benefits both theory and applications: on one hand, high order smoothness confers statistical guarantees to learning with Wasserstein approximations. On the other hand, the gradient formula allows to efficiently solve learning and optimization problems in practice. Promising preliminary experiments complement our analysis.
Author Information
Giulia Luise (University College London)
Alessandro Rudi (INRIA, Ecole Normale Superieure)
Massimiliano Pontil (IIT)
Carlo Ciliberto (Imperial College London)
More from the Same Authors
-
2021 Spotlight: Mixability made efficient: Fast online multiclass logistic regression »
Rémi Jézéquel · Pierre Gaillard · Alessandro Rudi -
2021 Spotlight: Beyond Tikhonov: faster learning with self-concordant losses, via iterative regularization »
Gaspard Beugnot · Julien Mairal · Alessandro Rudi -
2021 : Linear Convergence of Batch Greenkhorn for Regularized Multimarginal Optimal Transport »
Vladimir Kostic · Saverio Salzo · Massimiliano Pontil -
2022 Poster: Conditional Meta-Learning of Linear Representations »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2022 : Meta Optimal Transport »
Brandon Amos · Samuel Cohen · Giulia Luise · Ievgen Redko -
2022 Spotlight: Conditional Meta-Learning of Linear Representations »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Spotlight: A gradient estimator via L1-randomization for online zero-order optimization with two point feedback »
Arya Akhavan · Evgenii Chzhen · Massimiliano Pontil · Alexandre Tsybakov -
2022 Poster: A gradient estimator via L1-randomization for online zero-order optimization with two point feedback »
Arya Akhavan · Evgenii Chzhen · Massimiliano Pontil · Alexandre Tsybakov -
2022 Poster: Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces »
Vladimir Kostic · Pietro Novelli · Andreas Maurer · Carlo Ciliberto · Lorenzo Rosasco · Massimiliano Pontil -
2022 Poster: Group Meritocratic Fairness in Linear Contextual Bandits »
Riccardo Grazzi · Arya Akhavan · John IF Falk · Leonardo Cella · Massimiliano Pontil -
2022 Poster: Active Labeling: Streaming Stochastic Gradients »
Vivien Cabannes · Francis Bach · Vianney Perchet · Alessandro Rudi -
2021 : Carlo Ciliberto Q&A »
Carlo Ciliberto -
2021 : Carlo Ciliberto »
Carlo Ciliberto -
2021 Poster: Concentration inequalities under sub-Gaussian and sub-exponential conditions »
Andreas Maurer · Massimiliano Pontil -
2021 : The NeurIPS 2021 BEETL Competition: Benchmarks for EEG Transfer Learning + Q&A »
Xiaoxi Wei · Vinay Jayaram · Sylvain Chevallier · Giulia Luise · Camille Jeunet · Moritz Grosse-Wentrup · Alexandre Gramfort · Aldo A Faisal -
2021 Poster: A Gang of Adversarial Bandits »
Mark Herbster · Stephen Pasteris · Fabio Vitale · Massimiliano Pontil -
2021 Poster: Mixability made efficient: Fast online multiclass logistic regression »
Rémi Jézéquel · Pierre Gaillard · Alessandro Rudi -
2021 Poster: Overcoming the curse of dimensionality with Laplacian regularization in semi-supervised learning »
Vivien Cabannes · Loucas Pillaud-Vivien · Francis Bach · Alessandro Rudi -
2021 Poster: PSD Representations for Effective Probability Models »
Alessandro Rudi · Carlo Ciliberto -
2021 Poster: The Role of Global Labels in Few-Shot Classification and How to Infer Them »
Ruohan Wang · Massimiliano Pontil · Carlo Ciliberto -
2021 Poster: Beyond Tikhonov: faster learning with self-concordant losses, via iterative regularization »
Gaspard Beugnot · Julien Mairal · Alessandro Rudi -
2021 Poster: Distributed Zero-Order Optimization under Adversarial Noise »
Arya Akhavan · Massimiliano Pontil · Alexandre Tsybakov -
2020 Poster: A Non-Asymptotic Analysis for Stein Variational Gradient Descent »
Anna Korba · Adil Salim · Michael Arbel · Giulia Luise · Arthur Gretton -
2020 Poster: The Advantage of Conditional Meta-Learning for Biased Regularization and Fine Tuning »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2020 Poster: Non-parametric Models for Non-negative Functions »
Ulysse Marteau-Ferey · Francis Bach · Alessandro Rudi -
2020 Poster: The Wasserstein Proximal Gradient Algorithm »
Adil Salim · Anna Korba · Giulia Luise -
2020 Spotlight: Non-parametric Models for Non-negative Functions »
Ulysse Marteau-Ferey · Francis Bach · Alessandro Rudi -
2020 Poster: Structured Prediction for Conditional Meta-Learning »
Ruohan Wang · Yiannis Demiris · Carlo Ciliberto -
2020 Poster: Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning »
Luca Oneto · Michele Donini · Giulia Luise · Carlo Ciliberto · Andreas Maurer · Massimiliano Pontil -
2020 Poster: Fair regression with Wasserstein barycenters »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Poster: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Poster: Kernel Methods Through the Roof: Handling Billions of Points Efficiently »
Giacomo Meanti · Luigi Carratino · Lorenzo Rosasco · Alessandro Rudi -
2020 Oral: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Oral: Kernel Methods Through the Roof: Handling Billions of Points Efficiently »
Giacomo Meanti · Luigi Carratino · Lorenzo Rosasco · Alessandro Rudi -
2019 Poster: Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2019 Poster: Online-Within-Online Meta-Learning »
Giulia Denevi · Dimitris Stamos · Carlo Ciliberto · Massimiliano Pontil -
2019 Poster: Massively scalable Sinkhorn distances via the Nyström method »
Jason Altschuler · Francis Bach · Alessandro Rudi · Jonathan Niles-Weed -
2019 Poster: Localized Structured Prediction »
Carlo Ciliberto · Francis Bach · Alessandro Rudi -
2019 Poster: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2019 Spotlight: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2019 Poster: Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses »
Ulysse Marteau-Ferey · Francis Bach · Alessandro Rudi -
2019 Poster: Efficient online learning with kernels for adversarial large scale problems »
Rémi Jézéquel · Pierre Gaillard · Alessandro Rudi -
2018 Poster: On Fast Leverage Score Sampling and Optimal Learning »
Alessandro Rudi · Daniele Calandriello · Luigi Carratino · Lorenzo Rosasco -
2018 Poster: Statistical Optimality of Stochastic Gradient Descent on Hard Learning Problems through Multiple Passes »
Loucas Pillaud-Vivien · Alessandro Rudi · Francis Bach -
2018 Poster: Learning To Learn Around A Common Mean »
Giulia Denevi · Carlo Ciliberto · Dimitris Stamos · Massimiliano Pontil -
2018 Poster: Learning with SGD and Random Features »
Luigi Carratino · Alessandro Rudi · Lorenzo Rosasco -
2018 Spotlight: Learning with SGD and Random Features »
Luigi Carratino · Alessandro Rudi · Lorenzo Rosasco -
2018 Poster: Empirical Risk Minimization Under Fairness Constraints »
Michele Donini · Luca Oneto · Shai Ben-David · John Shawe-Taylor · Massimiliano Pontil -
2018 Poster: Manifold Structured Prediction »
Alessandro Rudi · Carlo Ciliberto · Gian Maria Marconi · Lorenzo Rosasco -
2017 Poster: Generalization Properties of Learning with Random Features »
Alessandro Rudi · Lorenzo Rosasco -
2017 Oral: Generalization Properties of Learning with Random Features »
Alessandro Rudi · Lorenzo Rosasco -
2017 Poster: Consistent Multitask Learning with Nonlinear Output Relations »
Carlo Ciliberto · Alessandro Rudi · Lorenzo Rosasco · Massimiliano Pontil -
2017 Poster: FALKON: An Optimal Large Scale Kernel Method »
Alessandro Rudi · Luigi Carratino · Lorenzo Rosasco -
2016 Poster: A Consistent Regularization Approach for Structured Prediction »
Carlo Ciliberto · Lorenzo Rosasco · Alessandro Rudi -
2015 Poster: Less is More: Nyström Computational Regularization »
Alessandro Rudi · Raffaello Camoriano · Lorenzo Rosasco -
2015 Oral: Less is More: Nyström Computational Regularization »
Alessandro Rudi · Raffaello Camoriano · Lorenzo Rosasco -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser