Timezone: »

 
Poster
Diverse Ensemble Evolution: Curriculum Data-Model Marriage
Tianyi Zhou · Shengjie Wang · Jeffrey A Bilmes

Thu Dec 06 02:00 PM -- 04:00 PM (PST) @ Room 517 AB #110
We study a new method (``Diverse Ensemble Evolution (DivE$^2$)'') to train an ensemble of machine learning models that assigns data to models at each training epoch based on each model's current expertise and an intra- and inter-model diversity reward. DivE$^2$ schedules, over the course of training epochs, the relative importance of these characteristics; it starts by selecting easy samples for each model, and then gradually adjusts towards the models having specialized and complementary expertise on subsets of the training data, thereby encouraging high accuracy of the ensemble. We utilize an intra-model diversity term on data assigned to each model, and an inter-model diversity term on data assigned to pairs of models, to penalize both within-model and cross-model redundancy. We formulate the data-model marriage problem as a generalized bipartite matching, represented as submodular maximization subject to two matroid constraints. DivE$^2$ solves a sequence of continuous-combinatorial optimizations with slowly varying objectives and constraints. The combinatorial part handles the data-model marriage while the continuous part updates model parameters based on the assignments. In experiments, DivE$^2$ outperforms other ensemble training methods under a variety of model aggregation techniques, while also maintaining competitive efficiency.

Author Information

Tianyi Zhou (University of Washington, Seattle)

Tianyi Zhou is a 6th-year Ph.D student of Paul G. Allen School of Computer Science and Engineering at University of Washington, Seattle, supervised by Jeff Bilmes and Carlos Guestrin. He has worked with Dacheng Tao at University of Technology Sydney and Nanyang Technological University for 4 years before going to UW. His research covers topics in machine learning, natural language processing, statistics, and data analysis. He has published 30+ papers with 1300+ citations at top conferences and journals including NeurIPS, ICML, ICLR, AISTATS, NAACL, ACM SIGKDD, IEEE ICDM, AAAI, IJCAI, IEEE ISIT, Machine Learning Journal (Springer), DMKD (Springer), IEEE TIP, IEEE TNNLS, etc. He is the recipient of the best student paper award at IEEE ICDM 2013.

Shengjie Wang ("University of Washington, Seattle")
Jeff A Bilmes (University of Washington, Seattle)

Jeffrey A. Bilmes is a professor at the Department of Electrical and Computer Engineering at the University of Washington, Seattle Washington. He is also an adjunct professor in Computer Science & Engineering and the department of Linguistics. Prof. Bilmes is the founder of the MELODI (MachinE Learning for Optimization and Data Interpretation) lab here in the department. Bilmes received his Ph.D. from the Computer Science Division of the department of Electrical Engineering and Computer Science, University of California in Berkeley and a masters degree from MIT. He was also a researcher at the International Computer Science Institute, and a member of the Realization group there. Prof. Bilmes is a 2001 NSF Career award winner, a 2002 CRA Digital Government Fellow, a 2008 NAE Gilbreth Lectureship award recipient, and a 2012/2013 ISCA Distinguished Lecturer. Prof. Bilmes was, along with Andrew Ng, one of the two UAI (Conference on Uncertainty in Artificial Intelligence) program chairs (2009) and then the general chair (2010). He was also a workshop chair (2011) and the tutorials chair (2014) at NIPS/NeurIPS (Neural Information Processing Systems), and is a regular senior technical chair at NeurIPS/NIPS since then. He was an action editor for JMLR (Journal of Machine Learning Research). Prof. Bilmes's primary interests lie in statistical modeling (particularly graphical model approaches) and signal processing for pattern classification, speech recognition, language processing, bioinformatics, machine learning, submodularity in combinatorial optimization and machine learning, active and semi-supervised learning, and audio/music processing. He is particularly interested in temporal graphical models (or dynamic graphical models, which includes HMMs, DBNs, and CRFs) and ways in which to design efficient algorithms for them and design their structure so that they may perform as better structured classifiers. He also has strong interests in speech-based human-computer interfaces, the statistical properties of natural objects and natural scenes, information theory and its relation to natural computation by humans and pattern recognition by machines, and computational music processing (such as human timing subtleties). He is also quite interested in high performance computing systems, computer architecture, and software techniques to reduce power consumption. Prof. Bilmes has also pioneered (starting in 2003) the development of submodularity within machine learning, and he received a best paper award at ICML 2013, a best paper award at NIPS 2013, and a best paper award at ACMBCB in 2016, all in this area. In 2014, Prof. Bilmes also received a most influential paper in 25 years award from the International Conference on Supercomputing, given to a paper on high-performance matrix optimization. Prof. Bilmes has authored the graphical models toolkit (GMTK), a dynamic graphical-model based software system widely used in speech, language, bioinformatics, and human-activity recognition.

More from the Same Authors