Timezone: »
We propose Graphical Generative Adversarial Networks (Graphical-GAN) to model structured data. Graphical-GAN conjoins the power of Bayesian networks on compactly representing the dependency structures among random variables and that of generative adversarial networks on learning expressive dependency functions. We introduce a structured recognition model to infer the posterior distribution of latent variables given observations. We generalize the Expectation Propagation (EP) algorithm to learn the generative model and recognition model jointly. Finally, we present two important instances of Graphical-GAN, i.e. Gaussian Mixture GAN (GMGAN) and State Space GAN (SSGAN), which can successfully learn the discrete and temporal structures on visual datasets, respectively.
Author Information
Chongxuan LI (Tsinghua University)
Max Welling (University of Amsterdam / Qualcomm AI Research)
Jun Zhu (Tsinghua University)
Bo Zhang (Tsinghua University)
More from the Same Authors
-
2021 : Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data »
Sindy Löwe · David Madras · Richard Zemel · Max Welling -
2021 : Particle Dynamics for Learning EBMs »
Kirill Neklyudov · Priyank Jaini · Max Welling -
2021 : Counter-Strike Deathmatch with Large-Scale Behavioural Cloning »
Tim Pearce · Jun Zhu -
2021 : Particle Dynamics for Learning EBMs »
Kirill Neklyudov · Priyank Jaini · Max Welling -
2021 : General Discussion 1 - What is out of distribution (OOD) generalization and why is it important? with Yoshua Bengio, Leyla Isik, Max Welling »
Yoshua Bengio · Leyla Isik · Max Welling · Joshua T Vogelstein · Weiwei Yang -
2021 Workshop: Bayesian Deep Learning »
Yarin Gal · Yingzhen Li · Sebastian Farquhar · Christos Louizos · Eric Nalisnick · Andrew Gordon Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2021 : Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders »
T. Anderson Keller · Qinghe Gao · Max Welling -
2021 : Live Panel »
Max Welling · Bharath Ramsundar · Irina Rish · Karianne J Bergen · Pushmeet Kohli -
2021 : Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders »
T. Anderson Keller · Qinghe Gao · Max Welling -
2021 : Session 1 | Invited talk: Max Welling, "Accelerating simulations of nature, both classical and quantum, with equivariant deep learning" »
Max Welling · Atilim Gunes Baydin -
2021 Workshop: AI for Science: Mind the Gaps »
Payal Chandak · Yuanqi Du · Tianfan Fu · Wenhao Gao · Kexin Huang · Shengchao Liu · Ziming Liu · Gabriel Spadon · Max Tegmark · Hanchen Wang · Adrian Weller · Max Welling · Marinka Zitnik -
2021 Poster: Argmax Flows and Multinomial Diffusion: Learning Categorical Distributions »
Emiel Hoogeboom · Didrik Nielsen · Priyank Jaini · Patrick Forré · Max Welling -
2021 Poster: Topographic VAEs learn Equivariant Capsules »
T. Anderson Keller · Max Welling -
2021 Poster: Stability and Generalization of Bilevel Programming in Hyperparameter Optimization »
Fan Bao · Guoqiang Wu · Chongxuan LI · Jun Zhu · Bo Zhang -
2021 : Unsupervised Indoor Wi-Fi Positioning »
Farhad G. Zanjani · Ilia Karmanov · Hanno Ackermann · Daniel Dijkman · Max Welling · Ishaque Kadampot · Simone Merlin · Steve Shellhammer · Rui Liang · Brian Buesker · Harshit Joshi · Vamsi Vegunta · Raamkumar Balamurthi · Bibhu Mohanty · Joseph Soriaga · Ron Tindall · Pat Lawlor -
2021 Poster: On the Convergence of Prior-Guided Zeroth-Order Optimization Algorithms »
Shuyu Cheng · Guoqiang Wu · Jun Zhu -
2021 Poster: Learning Equivariant Energy Based Models with Equivariant Stein Variational Gradient Descent »
Priyank Jaini · Lars Holdijk · Max Welling -
2021 Poster: E(n) Equivariant Normalizing Flows »
Victor Garcia Satorras · Emiel Hoogeboom · Fabian Fuchs · Ingmar Posner · Max Welling -
2021 Poster: Scalable Quasi-Bayesian Inference for Instrumental Variable Regression »
Ziyu Wang · Yuhao Zhou · Tongzheng Ren · Jun Zhu -
2021 Poster: Rethinking and Reweighting the Univariate Losses for Multi-Label Ranking: Consistency and Generalization »
Guoqiang Wu · Chongxuan LI · Kun Xu · Jun Zhu -
2021 Poster: Modality-Agnostic Topology Aware Localization »
Farhad Ghazvinian Zanjani · Ilia Karmanov · Hanno Ackermann · Daniel Dijkman · Simone Merlin · Max Welling · Fatih Porikli -
2021 Poster: AFEC: Active Forgetting of Negative Transfer in Continual Learning »
Liyuan Wang · Mingtian Zhang · Zhongfan Jia · Qian Li · Chenglong Bao · Kaisheng Ma · Jun Zhu · Yi Zhong -
2021 Poster: Accumulative Poisoning Attacks on Real-time Data »
Tianyu Pang · Xiao Yang · Yinpeng Dong · Hang Su · Jun Zhu -
2021 Oral: E(n) Equivariant Normalizing Flows »
Victor Garcia Satorras · Emiel Hoogeboom · Fabian Fuchs · Ingmar Posner · Max Welling -
2020 : Invited Talk: Max Welling - The LIAR (Learning with Interval Arithmetic Regularization) is Dead »
Max Welling -
2020 Poster: Multi-label classification: do Hamming loss and subset accuracy really conflict with each other? »
Guoqiang Wu · Jun Zhu -
2020 Poster: Natural Graph Networks »
Pim de Haan · Taco Cohen · Max Welling -
2020 Poster: Bi-level Score Matching for Learning Energy-based Latent Variable Models »
Fan Bao · Chongxuan LI · Kun Xu · Hang Su · Jun Zhu · Bo Zhang -
2020 Poster: SE(3)-Transformers: 3D Roto-Translation Equivariant Attention Networks »
Fabian Fuchs · Daniel E Worrall · Volker Fischer · Max Welling -
2020 Poster: Further Analysis of Outlier Detection with Deep Generative Models »
Ziyu Wang · Bin Dai · David P Wipf · Jun Zhu -
2020 Poster: Efficient Learning of Generative Models via Finite-Difference Score Matching »
Tianyu Pang · Kun Xu · Chongxuan LI · Yang Song · Stefano Ermon · Jun Zhu -
2020 Poster: SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows »
Didrik Nielsen · Priyank Jaini · Emiel Hoogeboom · Ole Winther · Max Welling -
2020 Oral: SurVAE Flows: Surjections to Bridge the Gap between VAEs and Flows »
Didrik Nielsen · Priyank Jaini · Emiel Hoogeboom · Ole Winther · Max Welling -
2020 Poster: Calibrated Reliable Regression using Maximum Mean Discrepancy »
Peng Cui · Wenbo Hu · Jun Zhu -
2020 Poster: The Convolution Exponential and Generalized Sylvester Flows »
Emiel Hoogeboom · Victor Garcia Satorras · Jakub Tomczak · Max Welling -
2020 Poster: Boosting Adversarial Training with Hypersphere Embedding »
Tianyu Pang · Xiao Yang · Yinpeng Dong · Kun Xu · Jun Zhu · Hang Su -
2020 Poster: Bayesian Bits: Unifying Quantization and Pruning »
Mart van Baalen · Christos Louizos · Markus Nagel · Rana Ali Amjad · Ying Wang · Tijmen Blankevoort · Max Welling -
2020 Poster: Experimental design for MRI by greedy policy search »
Tim Bakker · Herke van Hoof · Max Welling -
2020 Spotlight: Experimental design for MRI by greedy policy search »
Tim Bakker · Herke van Hoof · Max Welling -
2020 Poster: Adversarial Distributional Training for Robust Deep Learning »
Yinpeng Dong · Zhijie Deng · Tianyu Pang · Jun Zhu · Hang Su -
2020 Poster: MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning »
Elise van der Pol · Daniel E Worrall · Herke van Hoof · Frans Oliehoek · Max Welling -
2020 Poster: Understanding and Exploring the Network with Stochastic Architectures »
Zhijie Deng · Yinpeng Dong · Shifeng Zhang · Jun Zhu -
2019 : TBD »
Max Welling -
2019 : Keynote - ML »
Max Welling -
2019 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Eric Nalisnick · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2019 Poster: Invert to Learn to Invert »
Patrick Putzky · Max Welling -
2019 Poster: Deep Scale-spaces: Equivariance Over Scale »
Daniel Worrall · Max Welling -
2019 Poster: Improving Black-box Adversarial Attacks with a Transfer-based Prior »
Shuyu Cheng · Yinpeng Dong · Tianyu Pang · Hang Su · Jun Zhu -
2019 Poster: Integer Discrete Flows and Lossless Compression »
Emiel Hoogeboom · Jorn Peters · Rianne van den Berg · Max Welling -
2019 Poster: Generative Well-intentioned Networks »
Justin Cosentino · Jun Zhu -
2019 Poster: Multi-objects Generation with Amortized Structural Regularization »
Kun Xu · Chongxuan LI · Jun Zhu · Bo Zhang -
2019 Poster: The Functional Neural Process »
Christos Louizos · Xiahan Shi · Klamer Schutte · Max Welling -
2019 Poster: Combining Generative and Discriminative Models for Hybrid Inference »
Victor Garcia Satorras · Zeynep Akata · Max Welling -
2019 Spotlight: Combining Generative and Discriminative Models for Hybrid Inference »
Victor Garcia Satorras · Max Welling · Zeynep Akata -
2019 Poster: Combinatorial Bayesian Optimization using the Graph Cartesian Product »
Changyong Oh · Jakub Tomczak · Efstratios Gavves · Max Welling -
2018 : Making the Case for using more Inductive Bias in Deep Learning »
Max Welling -
2018 : Panel disucssion »
Max Welling · Tim Genewein · Edwin Park · Song Han -
2018 : Efficient Computation of Deep Convolutional Neural Networks: A Quantization Perspective »
Max Welling -
2018 : Prof. Max Welling »
Max Welling -
2018 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2018 Workshop: NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications »
Lixin Fan · Zhouchen Lin · Max Welling · Yurong Chen · Werner Bailer -
2018 Poster: Semi-crowdsourced Clustering with Deep Generative Models »
Yucen Luo · TIAN TIAN · Jiaxin Shi · Jun Zhu · Bo Zhang -
2018 Poster: Towards Robust Detection of Adversarial Examples »
Tianyu Pang · Chao Du · Yinpeng Dong · Jun Zhu -
2018 Spotlight: Towards Robust Detection of Adversarial Examples »
Tianyu Pang · Chao Du · Yinpeng Dong · Jun Zhu -
2018 Poster: 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data »
Maurice Weiler · Wouter Boomsma · Mario Geiger · Max Welling · Taco Cohen -
2017 : Panel Session »
Neil Lawrence · Finale Doshi-Velez · Zoubin Ghahramani · Yann LeCun · Max Welling · Yee Whye Teh · Ole Winther -
2017 : Deep Bayes for Distributed Learning, Uncertainty Quantification and Compression »
Max Welling -
2017 Workshop: Bayesian Deep Learning »
Yarin Gal · José Miguel Hernández-Lobato · Christos Louizos · Andrew Wilson · Andrew Wilson · Diederik Kingma · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2017 : Panel session »
Iain Murray · Max Welling · Juan Carrasquilla · Anatole von Lilienfeld · Gilles Louppe · Kyle Cranmer -
2017 : Panel: On the Foundations and Future of Approximate Inference »
David Blei · Zoubin Ghahramani · Katherine Heller · Tim Salimans · Max Welling · Matthew D. Hoffman -
2017 : Invited talk 1: Deep recurrent inverse modeling for radio astronomy and fast MRI imaging »
Max Welling -
2017 Workshop: Advances in Approximate Bayesian Inference »
Francisco Ruiz · Stephan Mandt · Cheng Zhang · James McInerney · James McInerney · Dustin Tran · Dustin Tran · David Blei · Max Welling · Tamara Broderick · Michalis Titsias -
2017 Poster: Triple Generative Adversarial Nets »
Chongxuan LI · Kun Xu · Jun Zhu · Bo Zhang -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris M Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Poster: Bayesian Compression for Deep Learning »
Christos Louizos · Karen Ullrich · Max Welling -
2017 Poster: Population Matching Discrepancy and Applications in Deep Learning »
Jianfei Chen · Chongxuan LI · Yizhong Ru · Jun Zhu -
2016 : Max Welling : Making Deep Learning Efficient Through Sparsification »
Max Welling -
2016 Workshop: Bayesian Deep Learning »
Yarin Gal · Christos Louizos · Zoubin Ghahramani · Kevin Murphy · Max Welling -
2016 Poster: Kernel Bayesian Inference with Posterior Regularization »
Yang Song · Jun Zhu · Yong Ren -
2016 Poster: Stochastic Gradient Geodesic MCMC Methods »
Chang Liu · Jun Zhu · Yang Song -
2016 Poster: Conditional Generative Moment-Matching Networks »
Yong Ren · Jun Zhu · Jialian Li · Yucen Luo -
2016 Poster: Improving Variational Autoencoders with Inverse Autoregressive Flow »
Diederik Kingma · Tim Salimans · Rafal Jozefowicz · Peter Chen · Xi Chen · Ilya Sutskever · Max Welling -
2015 Workshop: Scalable Monte Carlo Methods for Bayesian Analysis of Big Data »
Babak Shahbaba · Yee Whye Teh · Max Welling · Arnaud Doucet · Christophe Andrieu · Sebastian J. Vollmer · Pierre Jacob -
2015 : *Max Welling* Optimization Monte Carlo »
Max Welling -
2015 Symposium: Deep Learning Symposium »
Yoshua Bengio · Marc'Aurelio Ranzato · Honglak Lee · Max Welling · Andrew Y Ng -
2015 Poster: Max-Margin Majority Voting for Learning from Crowds »
TIAN TIAN · Jun Zhu -
2015 Poster: Max-Margin Deep Generative Models »
Chongxuan Li · Jun Zhu · Tim Shi · Bo Zhang -
2015 Poster: Bayesian dark knowledge »
Anoop Korattikara Balan · Vivek Rathod · Kevin Murphy · Max Welling -
2015 Poster: Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference »
Ted Meeds · Max Welling -
2015 Poster: Variational Dropout and the Local Reparameterization Trick »
Diederik Kingma · Tim Salimans · Max Welling -
2014 Workshop: ABC in Montreal »
Max Welling · Neil D Lawrence · Richard D Wilkinson · Ted Meeds · Christian X Robert -
2014 Poster: Distributed Bayesian Posterior Sampling via Moment Sharing »
Minjie Xu · Balaji Lakshminarayanan · Yee Whye Teh · Jun Zhu · Bo Zhang -
2014 Poster: Spectral Methods for Supervised Topic Models »
Yining Wang · Jun Zhu -
2014 Poster: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Demonstration: Machine Learning in the Browser »
Ted Meeds · Remco Hendriks · Said Al Faraby · Magiel Bruntink · Max Welling -
2014 Spotlight: Semi-supervised Learning with Deep Generative Models »
Diederik Kingma · Shakir Mohamed · Danilo Jimenez Rezende · Max Welling -
2014 Poster: Robust Bayesian Max-Margin Clustering »
Changyou Chen · Jun Zhu · Xinhua Zhang -
2013 Workshop: Probabilistic Models for Big Data »
Neil D Lawrence · Joaquin Quiñonero Candela · Tianshi Gao · James Hensman · Zoubin Ghahramani · Max Welling · David Blei · Ralf Herbrich -
2013 Poster: Scalable Inference for Logistic-Normal Topic Models »
Jianfei Chen · Jun Zhu · Zi Wang · Xun Zheng · Bo Zhang -
2012 Poster: Monte Carlo Methods for Maximum Margin Supervised Topic Models »
Qixia Jiang · Jun Zhu · Maosong Sun · Eric Xing -
2012 Poster: Bayesian Nonparametric Maximum Margin Matrix Factorization for Collaborative Prediction »
Minjie Xu · Jun Zhu · Bo Zhang -
2012 Poster: The Time-Marginalized Coalescent Prior for Hierarchical Clustering »
Levi Boyles · Max Welling -
2011 Poster: Statistical Tests for Optimization Efficiency »
Levi Boyles · Anoop Korattikara · Deva Ramanan · Max Welling -
2011 Poster: Infinite Latent SVM for Classification and Multi-task Learning »
Jun Zhu · Ning Chen · Eric Xing -
2010 Poster: Large Margin Learning of Upstream Scene Understanding Models »
Jun Zhu · Li-Jia Li · Li Fei-Fei · Eric Xing -
2010 Poster: On Herding and the Perceptron Cycling Theorem »
Andrew E Gelfand · Yutian Chen · Laurens van der Maaten · Max Welling -
2010 Poster: Predictive Subspace Learning for Multi-view Data: a Large Margin Approach »
Ning Chen · Jun Zhu · Eric Xing -
2010 Poster: Adaptive Multi-Task Lasso: with Application to eQTL Detection »
Seunghak Lee · Jun Zhu · Eric Xing -
2010 Poster: Efficient Relational Learning with Hidden Variable Detection »
Ni Lao · Jun Zhu · Liu Xinwang · Yandong Liu · William Cohen -
2008 Session: Oral session 10: Nonparametric Processes, Scene Processing and Image Statistics »
Max Welling -
2008 Poster: Asynchronous Distributed Learning of Topic Models »
Arthur Asuncion · Padhraic Smyth · Max Welling -
2008 Poster: Partially Observed Maximum Entropy Discrimination Markov Networks »
Jun Zhu · Eric Xing · Bo Zhang -
2007 Spotlight: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Spotlight: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Poster: Infinite State Bayes-Nets for Structured Domains »
Max Welling · Ian Porteous · Evgeniy Bart -
2007 Poster: Collapsed Variational Inference for HDP »
Yee Whye Teh · Kenichi Kurihara · Max Welling -
2007 Poster: Distributed Inference for Latent Dirichlet Allocation »
David Newman · Arthur Asuncion · Padhraic Smyth · Max Welling -
2007 Spotlight: Infinite State Bayes-Nets for Structured Domains »
Max Welling · Ian Porteous · Evgeniy Bart -
2006 Poster: Structure Learning in Markov Random Fields »
Sridevi Parise · Max Welling -
2006 Poster: Accelerated Variational Dirichlet Process Mixtures »
Kenichi Kurihara · Max Welling · Nikos Vlassis -
2006 Spotlight: Accelerated Variational Dirichlet Process Mixtures »
Kenichi Kurihara · Max Welling · Nikos Vlassis -
2006 Poster: A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation »
Yee Whye Teh · David Newman · Max Welling