Timezone: »
Determinantal point processes (DPPs) are well-suited to recommender systems where the goal is to generate collections of diverse, high-quality items. In the existing literature this is usually formulated as finding the mode of the DPP (the so-called MAP set). However, the MAP objective inherently assumes that the DPP models "optimal" recommendation sets, and yet obtaining such a DPP is nontrivial when there is no ready source of example optimal sets. In this paper we advocate an alternative framework for applying DPPs to recommender systems. Our approach assumes that the DPP simply models user engagements with recommended items, which is more consistent with how DPPs for recommender systems are typically trained. With this assumption, we are able to formulate a metric that measures the expected number of items that a user will engage with. We formalize this optimization of this metric as the Maximum Induced Cardinality (MIC) problem. Although the MIC objective is not submodular, we show that it can be approximated by a submodular function, and that empirically it is well-optimized by a greedy algorithm.
Author Information
Jennifer Gillenwater (Google)
Alex Kulesza (Google)
Sergei Vassilvitskii (Google)
Zelda Mariet (MIT)
More from the Same Authors
-
2021 : A Joint Exponential Mechanism for Differentially Private Top-k Set »
Andres Munoz Medina · Matthew Joseph · Jennifer Gillenwater · Monica Ribero Diaz -
2021 : Combining Public and Private Data »
Cecilia Ferrando · Jennifer Gillenwater · Alex Kulesza -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2023 Poster: Better Private Linear Regression Through Better Private Feature Selection »
Travis Dick · Jennifer Gillenwater · Matthew Joseph -
2020 Poster: Sliding Window Algorithms for k-Clustering Problems »
Michele Borassi · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam -
2020 Poster: Fair Hierarchical Clustering »
Sara Ahmadian · Alessandro Epasto · Marina Knittel · Ravi Kumar · Mohammad Mahdian · Benjamin Moseley · Philip Pham · Sergei Vassilvitskii · Yuyan Wang -
2019 : Coffee Break & Poster Session 1 »
Yan Zhang · Jonathon Hare · Adam Prugel-Bennett · Po Leung · Patrick Flaherty · Pitchaya Wiratchotisatian · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam · Theja Tulabandhula · Fabian Fuchs · Adam Kosiorek · Ingmar Posner · William Hang · Anna Goldie · Sujith Ravi · Azalia Mirhoseini · Yuwen Xiong · Mengye Ren · Renjie Liao · Raquel Urtasun · Haici Zhang · Michele Borassi · Shengda Luo · Andrew Trapp · Geoffroy Dubourg-Felonneau · Yasmeen Kussad · Christopher Bender · Manzil Zaheer · Junier Oliva · Michał Stypułkowski · Maciej Zieba · Austin Dill · Chun-Liang Li · Songwei Ge · Eunsu Kang · Oiwi Parker Jones · Kelvin Ka Wing Wong · Joshua Payne · Yang Li · Azade Nazi · Erkut Erdem · Aykut Erdem · Kevin O'Connor · Juan J Garcia · Maciej Zamorski · Jan Chorowski · Deeksha Sinha · Harry Clifford · John W Cassidy -
2019 Poster: Differentially Private Covariance Estimation »
Kareem Amin · Travis Dick · Alex Kulesza · Andres Munoz Medina · Sergei Vassilvitskii -
2019 Poster: DppNet: Approximating Determinantal Point Processes with Deep Networks »
Zelda Mariet · Yaniv Ovadia · Jasper Snoek -
2018 Poster: Exponentiated Strongly Rayleigh Distributions »
Zelda Mariet · Suvrit Sra · Stefanie Jegelka -
2018 Poster: Completing State Representations using Spectral Learning »
Nan Jiang · Alex Kulesza · Satinder Singh -
2017 Poster: Revenue Optimization with Approximate Bid Predictions »
Andres Munoz Medina · Sergei Vassilvitskii -
2017 Poster: Fair Clustering Through Fairlets »
Flavio Chierichetti · Ravi Kumar · Silvio Lattanzi · Sergei Vassilvitskii -
2017 Spotlight: Fair Clustering Through Fairlets »
Flavio Chierichetti · Ravi Kumar · Silvio Lattanzi · Sergei Vassilvitskii -
2017 Poster: Elementary Symmetric Polynomials for Optimal Experimental Design »
Zelda Mariet · Suvrit Sra -
2017 Poster: Statistical Cost Sharing »
Eric Balkanski · Umar Syed · Sergei Vassilvitskii -
2016 Poster: Kronecker Determinantal Point Processes »
Zelda Mariet · Suvrit Sra -
2016 Poster: On Mixtures of Markov Chains »
Rishi Gupta · Ravi Kumar · Sergei Vassilvitskii