Timezone: »
We compare the robustness of humans and current convolutional deep neural networks (DNNs) on object recognition under twelve different types of image degradations. First, using three well known DNNs (ResNet-152, VGG-19, GoogLeNet) we find the human visual system to be more robust to nearly all of the tested image manipulations, and we observe progressively diverging classification error-patterns between humans and DNNs when the signal gets weaker. Secondly, we show that DNNs trained directly on distorted images consistently surpass human performance on the exact distortion types they were trained on, yet they display extremely poor generalisation abilities when tested on other distortion types. For example, training on salt-and-pepper noise does not imply robustness on uniform white noise and vice versa. Thus, changes in the noise distribution between training and testing constitutes a crucial challenge to deep learning vision systems that can be systematically addressed in a lifelong machine learning approach. Our new dataset consisting of 83K carefully measured human psychophysical trials provide a useful reference for lifelong robustness against image degradations set by the human visual system.
Author Information
Robert Geirhos (University of Tübingen)
Carlos R. M. Temme (University of Tübingen)
Jonas Rauber (University of Tübingen)
Heiko H. Schütt (University of Tübingen)
Matthias Bethge (University of Tübingen)
Felix A. Wichmann (University of Tübingen)
More from the Same Authors
-
2021 Spotlight: How Well do Feature Visualizations Support Causal Understanding of CNN Activations? »
Roland S. Zimmermann · Judy Borowski · Robert Geirhos · Matthias Bethge · Thomas Wallis · Wieland Brendel -
2021 : ImageNet suffers from dichotomous data difficulty »
Kristof Meding · Luca Schulze Buschoff · Robert Geirhos · Felix A. Wichmann -
2021 : Out-of-distribution robustness: Limited image exposure of a four-year-old is enough to outperform ResNet-50 »
Lukas Huber · Robert Geirhos · Felix A. Wichmann -
2021 Poster: How Well do Feature Visualizations Support Causal Understanding of CNN Activations? »
Roland S. Zimmermann · Judy Borowski · Robert Geirhos · Matthias Bethge · Thomas Wallis · Wieland Brendel -
2021 Oral: Partial success in closing the gap between human and machine vision »
Robert Geirhos · Kantharaju Narayanappa · Benjamin Mitzkus · Tizian Thieringer · Matthias Bethge · Felix A. Wichmann · Wieland Brendel -
2021 Poster: Partial success in closing the gap between human and machine vision »
Robert Geirhos · Kantharaju Narayanappa · Benjamin Mitzkus · Tizian Thieringer · Matthias Bethge · Felix A. Wichmann · Wieland Brendel -
2020 Poster: Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency »
Robert Geirhos · Kristof Meding · Felix A. Wichmann -
2020 Poster: System Identification with Biophysical Constraints: A Circuit Model of the Inner Retina »
Cornelius Schröder · David Klindt · Sarah Strauss · Katrin Franke · Matthias Bethge · Thomas Euler · Philipp Berens -
2020 Spotlight: System Identification with Biophysical Constraints: A Circuit Model of the Inner Retina »
Cornelius Schröder · David Klindt · Sarah Strauss · Katrin Franke · Matthias Bethge · Thomas Euler · Philipp Berens -
2019 : Panel Discussion: What sorts of cognitive or biological (architectural) inductive biases will be crucial for developing effective artificial intelligence? »
Irina Higgins · Talia Konkle · Matthias Bethge · Nikolaus Kriegeskorte -
2019 : Perturbation-based remodeling of visual neural network representations »
Matthias Bethge -
2019 Poster: Learning from brains how to regularize machines »
Zhe Li · Wieland Brendel · Edgar Walker · Erick Cobos · Taliah Muhammad · Jacob Reimer · Matthias Bethge · Fabian Sinz · Xaq Pitkow · Andreas Tolias -
2019 Poster: Perceiving the arrow of time in autoregressive motion »
Kristof Meding · Dominik Janzing · Bernhard Schölkopf · Felix A. Wichmann -
2019 Poster: Accurate, reliable and fast robustness evaluation »
Wieland Brendel · Jonas Rauber · Matthias Kümmerer · Ivan Ustyuzhaninov · Matthias Bethge -
2019 Spotlight: Perceiving the arrow of time in autoregressive motion »
Kristof Meding · Dominik Janzing · Bernhard Schölkopf · Felix A. Wichmann -
2018 : Adversarial Vision Challenge: Results of the Adversarial Vision Challenge »
Wieland Brendel · Jonas Rauber · Marcel Salathé · Alexey Kurakin · Nicolas Papernot · Sharada Mohanty · Matthias Bethge -
2017 : DeepArt competition »
Alexander Ecker · Leon A Gatys · Matthias Bethge -
2017 Poster: Neural system identification for large populations separating “what” and “where” »
David Klindt · Alexander Ecker · Thomas Euler · Matthias Bethge -
2016 : Matthias Bethge - Texture perception in humans and machines »
Matthias Bethge -
2015 Poster: Texture Synthesis Using Convolutional Neural Networks »
Leon A Gatys · Alexander Ecker · Matthias Bethge -
2015 Poster: Generative Image Modeling Using Spatial LSTMs »
Lucas Theis · Matthias Bethge -
2012 Poster: Training sparse natural image models with a fast Gibbs sampler of an extended state space »
Lucas Theis · Jascha Sohl-Dickstein · Matthias Bethge -
2010 Poster: Evaluating neuronal codes for inference using Fisher information »
Ralf Haefner · Matthias Bethge -
2009 Poster: Hierarchical Modeling of Local Image Features through $L_p$-Nested Symmetric Distributions »
Fabian H Sinz · Eero Simoncelli · Matthias Bethge -
2009 Poster: Neurometric function analysis of population codes »
Philipp Berens · Sebastian Gerwinn · Alexander S Ecker · Matthias Bethge -
2009 Poster: A joint maximum-entropy model for binary neural population patterns and continuous signals »
Sebastian Gerwinn · Philipp Berens · Matthias Bethge -
2009 Spotlight: A joint maximum-entropy model for binary neural population patterns and continuous signals »
Sebastian Gerwinn · Philipp Berens · Matthias Bethge -
2009 Poster: Bayesian estimation of orientation preference maps »
Jakob H Macke · Sebastian Gerwinn · Leonard White · Matthias Kaschube · Matthias Bethge -
2008 Poster: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2008 Spotlight: The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction »
Fabian H Sinz · Matthias Bethge -
2007 Oral: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Spotlight: Near-Maximum Entropy Models for Binary Neural Representations of Natural Images »
Matthias Bethge · Philipp Berens -
2007 Poster: Near-Maximum Entropy Models for Binary Neural Representations of Natural Images »
Matthias Bethge · Philipp Berens -
2007 Poster: Bayesian Inference for Spiking Neuron Models with a Sparsity Prior »
Sebastian Gerwinn · Jakob H Macke · Matthias Seeger · Matthias Bethge -
2007 Poster: Receptive Fields without Spike-Triggering »
Jakob H Macke · Günther Zeck · Matthias Bethge