Timezone: »

Submodular Maximization via Gradient Ascent: The Case of Deep Submodular Functions
Wenruo Bai · William Stafford Noble · Jeff Bilmes

Wed Dec 05 02:00 PM -- 04:00 PM (PST) @ Room 210 #36
We study the problem of maximizing deep submodular functions (DSFs) subject to a matroid constraint. DSFs are an expressive class of submodular functions that include, as strict subfamilies, the facility location, weighted coverage, and sums of concave composed with modular functions. We use a strategy similar to the continuous greedy approach, but we show that the multilinear extension of any DSF has a natural and computationally attainable concave relaxation that we can optimize using gradient ascent. Our results show a guarantee of $\max_{0<\delta<1}(1-\epsilon-\delta-e^{-\delta^2\Omega(k)})$ with a running time of $O(\nicefrac{n^2}{\epsilon^2})$ plus time for pipage rounding to recover a discrete solution, where $k$ is the rank of the matroid constraint. This bound is often better than the standard $1-1/e$ guarantee of the continuous greedy algorithm, but runs much faster. Our bound also holds even for fully curved ($c=1$) functions where the guarantee of $1-c/e$ degenerates to $1-1/e$ where $c$ is the curvature of $f$. We perform computational experiments that support our theoretical results.

Author Information

Wenruo Bai (University of Washington)
William Stafford Noble (University of Washington)
Jeff Bilmes (University of Washington, Seattle)

More from the Same Authors