Timezone: »
Poster
Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs
Han Shao · Xiaotian Yu · Irwin King · Michael Lyu
In linear stochastic bandits, it is commonly assumed that payoffs are with sub-Gaussian noises. In this paper, under a weaker assumption on noises, we study the problem of \underline{lin}ear stochastic {\underline b}andits with h{\underline e}avy-{\underline t}ailed payoffs (LinBET), where the distributions have finite moments of order $1+\epsilon$, for some $\epsilon\in (0,1]$. We rigorously analyze the regret lower bound of LinBET as $\Omega(T^{\frac{1}{1+\epsilon}})$, implying that finite moments of order 2 (i.e., finite variances) yield the bound of $\Omega(\sqrt{T})$, with $T$ being the total number of rounds to play bandits. The provided lower bound also indicates that the state-of-the-art algorithms for LinBET are far from optimal. By adopting median of means with a well-designed allocation of decisions and truncation based on historical information, we develop two novel bandit algorithms, where the regret upper bounds match the lower bound up to polylogarithmic factors. To the best of our knowledge, we are the first to solve LinBET optimally in the sense of the polynomial order on $T$. Our proposed algorithms are evaluated based on synthetic datasets, and outperform the state-of-the-art results.
Author Information
Han Shao (The Chinese University of Hong Kong)
Xiaotian Yu (The Chinese University of Hong Kong)
Irwin King (Chinese University of Hong Kong)
Michael Lyu (CUHK)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Spotlight: Almost Optimal Algorithms for Linear Stochastic Bandits with Heavy-Tailed Payoffs »
Wed Dec 5th 02:50 -- 02:55 PM Room Room 220 CD
More from the Same Authors
-
2020 Poster: Revisiting Parameter Sharing for Automatic Neural Channel Number Search »
Jiaxing Wang · Haoli Bai · Jiaxiang Wu · Xupeng Shi · Junzhou Huang · Irwin King · Michael Lyu · Jian Cheng -
2020 Poster: Unsupervised Text Generation by Learning from Search »
Jingjing Li · Zichao Li · Lili Mou · Xin Jiang · Michael Lyu · Irwin King -
2014 Poster: Combinatorial Pure Exploration of Multi-Armed Bandits »
Shouyuan Chen · Tian Lin · Irwin King · Michael Lyu · Wei Chen -
2014 Oral: Combinatorial Pure Exploration of Multi-Armed Bandits »
Shouyuan Chen · Tian Lin · Irwin King · Michael Lyu · Wei Chen -
2013 Poster: Exact and Stable Recovery of Pairwise Interaction Tensors »
Shouyuan Chen · Michael Lyu · Irwin King · Zenglin Xu -
2013 Spotlight: Exact and Stable Recovery of Pairwise Interaction Tensors »
Shouyuan Chen · Michael Lyu · Irwin King · Zenglin Xu -
2010 Workshop: Machine Learning for Social Computing »
Zenglin Xu · Irwin King · Shenghuo Zhu · Yuan Qi · Rong Yan · John Yen -
2009 Poster: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael Lyu · Zhirong Yang -
2009 Spotlight: Adaptive Regularization for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael Lyu · Zhirong Yang -
2009 Poster: Heavy-Tailed Symmetric Stochastic Neighbor Embedding »
Zhirong Yang · Irwin King · Zenglin Xu · Erkki Oja -
2009 Spotlight: Heavy-Tailed Symmetric Stochastic Neighbor Embedding »
Zhirong Yang · Irwin King · Zenglin Xu · Erkki Oja -
2008 Poster: Learning with Consistency between Inductive Functions and Kernels »
Haixuan Yang · Irwin King · Michael Lyu -
2008 Spotlight: Learning with Consistency between Inductive Functions and Kernels »
Haixuan Yang · Irwin King · Michael Lyu -
2008 Poster: An Extended Level Method for Efficient Multiple Kernel Learning »
Zenglin Xu · Rong Jin · Irwin King · Michael Lyu -
2007 Poster: Efficient Convex Relaxation for Transductive Support Vector Machine »
Zenglin Xu · Rong Jin · Jianke Zhu · Irwin King · Michael Lyu