Timezone: »

Learning Plannable Representations with Causal InfoGAN
Thanard Kurutach · Aviv Tamar · Ge Yang · Stuart Russell · Pieter Abbeel

Wed Dec 05 02:00 PM -- 04:00 PM (PST) @ Room 517 AB #116

In recent years, deep generative models have been shown to 'imagine' convincing high-dimensional observations such as images, audio, and even video, learning directly from raw data. In this work, we ask how to imagine goal-directed visual plans -- a plausible sequence of observations that transition a dynamical system from its current configuration to a desired goal state, which can later be used as a reference trajectory for control. We focus on systems with high-dimensional observations, such as images, and propose an approach that naturally combines representation learning and planning. Our framework learns a generative model of sequential observations, where the generative process is induced by a transition in a low-dimensional planning model, and an additional noise. By maximizing the mutual information between the generated observations and the transition in the planning model, we obtain a low-dimensional representation that best explains the causal nature of the data. We structure the planning model to be compatible with efficient planning algorithms, and we propose several such models based on either discrete or continuous states. Finally, to generate a visual plan, we project the current and goal observations onto their respective states in the planning model, plan a trajectory, and then use the generative model to transform the trajectory to a sequence of observations. We demonstrate our method on imagining plausible visual plans of rope manipulation.

Author Information

Thanard Kurutach (University of California Berkeley)
Aviv Tamar (UC Berkeley)
Ge Yang (Berkeley)
Stuart Russell (UC Berkeley)
Pieter Abbeel (UC Berkeley | Gradescope | Covariant)

Pieter Abbeel is Professor and Director of the Robot Learning Lab at UC Berkeley [2008- ], Co-Director of the Berkeley AI Research (BAIR) Lab, Co-Founder of covariant.ai [2017- ], Co-Founder of Gradescope [2014- ], Advisor to OpenAI, Founding Faculty Partner AI@TheHouse venture fund, Advisor to many AI/Robotics start-ups. He works in machine learning and robotics. In particular his research focuses on making robots learn from people (apprenticeship learning), how to make robots learn through their own trial and error (reinforcement learning), and how to speed up skill acquisition through learning-to-learn (meta-learning). His robots have learned advanced helicopter aerobatics, knot-tying, basic assembly, organizing laundry, locomotion, and vision-based robotic manipulation. He has won numerous awards, including best paper awards at ICML, NIPS and ICRA, early career awards from NSF, Darpa, ONR, AFOSR, Sloan, TR35, IEEE, and the Presidential Early Career Award for Scientists and Engineers (PECASE). Pieter's work is frequently featured in the popular press, including New York Times, BBC, Bloomberg, Wall Street Journal, Wired, Forbes, Tech Review, NPR.

More from the Same Authors