Timezone: »
Archived data from the US network of weather radars hold detailed information about bird migration over the last 25 years, including very high-resolution partial measurements of velocity. Historically, most of this spatial resolution is discarded and velocities are summarized at a very small number of locations due to modeling and algorithmic limitations. This paper presents a Gaussian process (GP) model to reconstruct high-resolution full velocity fields across the entire US. The GP faithfully models all aspects of the problem in a single joint framework, including spatially random velocities, partial velocity measurements, station-specific geometries, measurement noise, and an ambiguity known as aliasing. We develop fast inference algorithms based on the FFT; to do so, we employ a creative use of Laplace's method to sidestep the fact that the kernel of the joint process is non-stationary.
Author Information
Rico Angell (University of Massachusetts)
Daniel Sheldon (University of Massachusetts Amherst)
More from the Same Authors
-
2022 Spotlight: Kernel Interpolation with Sparse Grids »
Mohit Yadav · Daniel Sheldon · Cameron Musco -
2022 Poster: Kernel Interpolation with Sparse Grids »
Mohit Yadav · Daniel Sheldon · Cameron Musco -
2021 Poster: Relaxed Marginal Consistency for Differentially Private Query Answering »
Ryan McKenna · Siddhant Pradhan · Daniel Sheldon · Gerome Miklau -
2020 Poster: Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization »
Abhinav Agrawal · Daniel Sheldon · Justin Domke -
2020 Poster: Permute-and-Flip: A new mechanism for differentially private selection »
Ryan McKenna · Daniel Sheldon -
2020 Spotlight: Permute-and-Flip: A new mechanism for differentially private selection »
Ryan McKenna · Daniel Sheldon -
2019 Poster: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2019 Spotlight: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2019 Poster: Differentially Private Bayesian Linear Regression »
Garrett Bernstein · Daniel Sheldon -
2018 Poster: Differentially Private Bayesian Inference for Exponential Families »
Garrett Bernstein · Daniel Sheldon -
2018 Poster: Importance Weighting and Variational Inference »
Justin Domke · Daniel Sheldon -
2016 Poster: Probabilistic Inference with Generating Functions for Poisson Latent Variable Models »
Kevin Winner · Daniel Sheldon -
2014 Poster: Stochastic Network Design in Bidirected Trees »
Xiaojian Wu · Daniel Sheldon · Shlomo Zilberstein -
2013 Workshop: Machine Learning for Sustainability »
Edwin Bonilla · Thomas Dietterich · Theodoros Damoulas · Andreas Krause · Daniel Sheldon · Iadine Chades · J. Zico Kolter · Bistra Dilkina · Carla Gomes · Hugo P Simao -
2011 Poster: Collective Graphical Models »
Daniel Sheldon · Thomas Dietterich -
2007 Spotlight: Collective Inference on Markov Models for Modeling Bird Migration »
Daniel Sheldon · M.A. Saleh Elmohamed · Dexter Kozen -
2007 Poster: Collective Inference on Markov Models for Modeling Bird Migration »
Daniel Sheldon · M.A. Saleh Elmohamed · Dexter Kozen