Timezone: »
We consider the problem of improving kernel approximation via randomized feature maps. These maps arise as Monte Carlo approximation to integral representations of kernel functions and scale up kernel methods for larger datasets. Based on an efficient numerical integration technique, we propose a unifying approach that reinterprets the previous random features methods and extends to better estimates of the kernel approximation. We derive the convergence behavior and conduct an extensive empirical study that supports our hypothesis.
Author Information
Marina Munkhoeva (Skoltech / Skolkovo Institute of Science and Technology)
Yermek Kapushev (Skolkovo Institute of Science and Technology)
Evgeny Burnaev (Skoltech)
Evgeny Burnaev obtained his MSc in Applied Physics and Mathematics from the Moscow Institute of Physics and Technology in 2006. After successfully defending his PhD thesis in Foundations of Computer Science at the Institute for Information Transmission Problem RAS (IITP RAS) in 2008, Evgeny stayed with the Institute as a head of IITP Data Analysis and Predictive Modeling Lab. Since 2007 Evgeny Burnaev carried out a number of successful industrial projects with Airbus, SAFT, IHI, and Sahara Force India Formula 1 team among others. The corresponding data analysis algorithms, developed by Evgeny Burnaev and his scientific group, formed a core of the algorithmic software library for metamodeling and optimization. Thanks to the developed functionality, engineers can construct fast mathematical approximations to long running computer codes (realizing physical models) based on available data and perform design space exploration for trade-off studies. The software library passed the final Technology Readiness Level 6 certification in Airbus. According to Airbus experts, application of the library “provides the reduction of up to 10% of lead time and cost in several areas of the aircraft design process”. Nowadays a spin-off company Datadvance develops a Software platform for Design Space Exploration with GUI based on this algorithmic core. Since 2016 Evgeny Burnaev works as Associate Professor of Skoltech and manages his research group for Advanced Data Analytics in Science and Engineering For his scientific achievements in the year 2017 Evgeny Burnaev was honored with the Moscow Government Prize for Young Scientists in the category for the Transmission, Storage, Processing and Protection of Information for leading the project “The development of methods for predictive analytics for processing industrial, biomedical and financial data.”
Ivan Oseledets (Skoltech)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Spotlight: Quadrature-based features for kernel approximation »
Thu. Dec 6th 02:55 -- 03:00 PM Room Room 220 CD
More from the Same Authors
-
2022 Poster: Wasserstein Iterative Networks for Barycenter Estimation »
Alexander Korotin · Vage Egiazarian · Lingxiao Li · Evgeny Burnaev -
2022 Poster: TTOpt: A Maximum Volume Quantized Tensor Train-based Optimization and its Application to Reinforcement Learning »
Konstantin Sozykin · Andrei Chertkov · Roman Schutski · Anh-Huy Phan · Andrzej S CICHOCKI · Ivan Oseledets -
2022 Poster: Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport? »
Alexander Korotin · Alexander Kolesov · Evgeny Burnaev -
2022 Spotlight: Lightning Talks 6B-2 »
Alexander Korotin · Jinyuan Jia · Weijian Deng · Shi Feng · Maying Shen · Denizalp Goktas · Fang-Yi Yu · Alexander Kolesov · Sadie Zhao · Stephen Gould · Hongxu Yin · Wenjie Qu · Liang Zheng · Evgeny Burnaev · Amy Greenwald · Neil Gong · Pavlo Molchanov · Yiling Chen · Lei Mao · Jianna Liu · Jose M. Alvarez -
2022 Spotlight: Kantorovich Strikes Back! Wasserstein GANs are not Optimal Transport? »
Alexander Korotin · Alexander Kolesov · Evgeny Burnaev -
2022 Spotlight: Lightning Talks 2A-4 »
Sarthak Mittal · Richard Grumitt · Zuoyu Yan · Lihao Wang · Dongsheng Wang · Alexander Korotin · Jiangxin Sun · Ankit Gupta · Vage Egiazarian · Tengfei Ma · Yi Zhou · Yishi Xu · Albert Gu · Biwei Dai · Chunyu Wang · Yoshua Bengio · Uros Seljak · Miaoge Li · Guillaume Lajoie · Yiqun Wang · Liangcai Gao · Lingxiao Li · Jonathan Berant · Huang Hu · Xiaoqing Zheng · Zhibin Duan · Hanjiang Lai · Evgeny Burnaev · Zhi Tang · Zhi Jin · Xuanjing Huang · Chaojie Wang · Yusu Wang · Jian-Fang Hu · Bo Chen · Chao Chen · Hao Zhou · Mingyuan Zhou -
2022 Spotlight: Wasserstein Iterative Networks for Barycenter Estimation »
Alexander Korotin · Vage Egiazarian · Lingxiao Li · Evgeny Burnaev -
2022 Poster: Smoothed Embeddings for Certified Few-Shot Learning »
Mikhail Pautov · Olesya Kuznetsova · Nurislam Tursynbek · Aleksandr Petiushko · Ivan Oseledets -
2021 Workshop: Second Workshop on Quantum Tensor Networks in Machine Learning »
Xiao-Yang Liu · Qibin Zhao · Ivan Oseledets · Yufei Ding · Guillaume Rabusseau · Jean Kossaifi · Khadijeh Najafi · Anwar Walid · Andrzej Cichocki · Masashi Sugiyama -
2020 : Panel Discussion 1: Theoretical, Algorithmic and Physical »
Jacob Biamonte · Ivan Oseledets · Jens Eisert · Nadav Cohen · Guillaume Rabusseau · Xiao-Yang Liu -
2020 : Invited Talk 4 Q&A by Ivan »
Ivan Oseledets -
2020 : Invited Talk 4: Quantum in ML and ML in Quantum »
Ivan Oseledets -
2020 Poster: Interpolation Technique to Speed Up Gradients Propagation in Neural ODEs »
Talgat Daulbaev · Alexandr Katrutsa · Larisa Markeeva · Julia Gusak · Andrzej Cichocki · Ivan Oseledets