Timezone: »
Graph embedding methods represent nodes in a continuous vector space, preserving different types of relational information from the graph. There are many hyper-parameters to these methods (e.g. the length of a random walk) which have to be manually tuned for every graph. In this paper, we replace previously fixed hyper-parameters with trainable ones that we automatically learn via backpropagation. In particular, we propose a novel attention model on the power series of the transition matrix, which guides the random walk to optimize an upstream objective. Unlike previous approaches to attention models, the method that we propose utilizes attention parameters exclusively on the data itself (e.g. on the random walk), and are not used by the model for inference. We experiment on link prediction tasks, as we aim to produce embeddings that best-preserve the graph structure, generalizing to unseen information. We improve state-of-the-art results on a comprehensive suite of real-world graph datasets including social, collaboration, and biological networks, where we observe that our graph attention model can reduce the error by up to 20\%-40\%. We show that our automatically-learned attention parameters can vary significantly per graph, and correspond to the optimal choice of hyper-parameter if we manually tune existing methods.
Author Information
Sami Abu-El-Haija (Information Sciences Institute @ USC)
Bryan Perozzi (Google AI)
Rami Al-Rfou (Google Research)
Rami Al-Rfou received his PhD at Stony Brook University. He conducted his research on the application of deep learning in multilingual natural language processing with emphasis on languages with scarce resources. Currently, he focuses on modeling contextual cues for dialogue modeling. For more information check personal website (http://alrfou.com).
Alexander Alemi (Google)
More from the Same Authors
-
2021 : PAC^m-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime »
Joshua Dillon · Warren Morningstar · Alexander Alemi -
2022 : Trajectory ensembling for fine tuning - performance gains without modifying training »
Louise Anderson-Conway · Vighnesh Birodkar · Saurabh Singh · Hossein Mobahi · Alexander Alemi -
2022 : VN-Transformer: Rotation-Equivariant Attention for Vector Neurons »
Serge Assaad · Carlton Downey · Rami Al-Rfou · Nigamaa Nayakanti · Benjamin Sapp -
2023 Poster: Learning Large Graph Property Prediction via Graph Segment Training »
Kaidi Cao · Phitchaya Phothilimtha · Sami Abu-El-Haija · Dustin Zelle · Yanqi Zhou · Charith Mendis · Jure Leskovec · Bryan Perozzi -
2023 Poster: TpuGraphs: A Performance Prediction Dataset on Large Tensor Computational Graphs »
Phitchaya Phothilimtha · Sami Abu-El-Haija · Kaidi Cao · Bahare Fatemi · Charith Mendis · Bryan Perozzi -
2022 Spotlight: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2022 Poster: Machine Learning on Graphs: A Model and Comprehensive Taxonomy »
Ines Chami · Sami Abu-El-Haija · Bryan Perozzi · Christopher Ré · Kevin Murphy -
2022 : TF-GNN Basics (Hands on) »
Sami A Abu-El-Haija -
2022 : GNN Basics »
Sami A Abu-El-Haija -
2022 Expo Workshop: Graph Neural Networks in Tensorflow: A Practical Guide »
Bryan Perozzi · Sami A Abu-El-Haija · Neslihan Bulut · Brandon Mayer -
2021 : PAC^m-Bayes: Narrowing the Empirical Risk Gap in the Misspecified Bayesian Regime »
Alexander Alemi -
2021 Poster: Does Knowledge Distillation Really Work? »
Samuel Stanton · Pavel Izmailov · Polina Kirichenko · Alexander Alemi · Andrew Wilson -
2021 Poster: Implicit SVD for Graph Representation Learning »
Sami Abu-El-Haija · Hesham Mostafa · Marcel Nassar · Valentino Crespi · Greg Ver Steeg · Aram Galstyan -
2020 Workshop: Deep Learning through Information Geometry »
Pratik Chaudhari · Alexander Alemi · Varun Jog · Dhagash Mehta · Frank Nielsen · Stefano Soatto · Greg Ver Steeg -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 : Invited Talk: Alexander A Alemi »
Alexander Alemi -
2018 Poster: GILBO: One Metric to Measure Them All »
Alexander Alemi · Ian Fischer -
2018 Spotlight: GILBO: One Metric to Measure Them All »
Alexander Alemi · Ian Fischer -
2016 Poster: DeepMath - Deep Sequence Models for Premise Selection »
Geoffrey Irving · Christian Szegedy · Alexander Alemi · Niklas Een · Francois Chollet · Josef Urban