Timezone: »
Poster
The Sample Complexity of Semi-Supervised Learning with Nonparametric Mixture Models
Chen Dan · Liu Leqi · Bryon Aragam · Pradeep Ravikumar · Eric Xing
We study the sample complexity of semi-supervised learning (SSL) and introduce new assumptions based on the mismatch between a mixture model learned from unlabeled data and the true mixture model induced by the (unknown) class conditional distributions. Under these assumptions, we establish an $\Omega(K\log K)$ labeled sample complexity bound without imposing parametric assumptions, where $K$ is the number of classes. Our results suggest that even in nonparametric settings it is possible to learn a near-optimal classifier using only a few labeled samples. Unlike previous theoretical work which focuses on binary classification, we consider general multiclass classification ($K>2$), which requires solving a difficult permutation learning problem. This permutation defines a classifier whose classification error is controlled by the Wasserstein distance between mixing measures, and we provide finite-sample results characterizing the behaviour of the excess risk of this classifier. Finally, we describe three algorithms for computing these estimators based on a connection to bipartite graph matching, and perform experiments to illustrate the superiority of the MLE over the majority vote estimator.
Author Information
Chen Dan (Carnegie Mellon University)
Liu Leqi (Carnegie Mellon University)
Bryon Aragam (Carnegie Mellon University)
Pradeep Ravikumar (Carnegie Mellon University)
Eric Xing (Petuum Inc. / Carnegie Mellon University)
More from the Same Authors
-
2021 : Multi-modal Self-supervised Pre-training for Large-scale Genome Data »
Shentong Mo · Xi Fu · Chenyang Hong · Yizhen Chen · Yuxuan Zheng · Xiangru Tang · Yanyan Lan · Zhiqiang Shen · Eric Xing -
2022 : Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization »
Elan Rosenfeld · Pradeep Ravikumar · Andrej Risteski -
2022 : Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation »
yifan zhang · Hanlin Zhang · Zachary Lipton · Li Erran Li · Eric Xing -
2022 : Sample-Specific Contextualized Graphical Models Using Clinical and Molecular Data Reveal Transcriptional Network Heterogeneity Across 7000 Tumors »
Caleb Ellington · Ben Lengerich · Thomas Watkins · Jiekun Yang · Manolis Kellis · Eric Xing -
2022 Spotlight: Identifiability of deep generative models without auxiliary information »
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam -
2022 : Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization »
Elan Rosenfeld · Pradeep Ravikumar · Andrej Risteski -
2022 : Panel Discussion »
Behnam Neyshabur · David Sontag · Pradeep Ravikumar · Erin Hartman -
2022 Workshop: Human in the Loop Learning (HiLL) Workshop at NeurIPS 2022 »
Shanghang Zhang · Hao Dong · Wei Pan · Pradeep Ravikumar · Vittorio Ferrari · Fisher Yu · Xin Wang · Zihan Ding -
2022 Poster: DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization »
Kevin Bello · Bryon Aragam · Pradeep Ravikumar -
2022 Poster: Identifiability of deep generative models without auxiliary information »
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam -
2022 Poster: Masked Prediction: A Parameter Identifiability View »
Bingbin Liu · Daniel Hsu · Pradeep Ravikumar · Andrej Risteski -
2022 Poster: First is Better Than Last for Language Data Influence »
Chih-Kuan Yeh · Ankur Taly · Mukund Sundararajan · Frederick Liu · Pradeep Ravikumar -
2021 Workshop: Math AI for Education (MATHAI4ED): Bridging the Gap Between Research and Smart Education »
Pan Lu · Yuhuai Wu · Sean Welleck · Xiaodan Liang · Eric Xing · James McClelland -
2021 Poster: Learning latent causal graphs via mixture oracles »
Bohdan Kivva · Goutham Rajendran · Pradeep Ravikumar · Bryon Aragam -
2021 Poster: Boosted CVaR Classification »
Runtian Zhai · Chen Dan · Arun Suggala · J. Zico Kolter · Pradeep Ravikumar -
2021 Poster: Multi-task Learning of Order-Consistent Causal Graphs »
Xinshi Chen · Haoran Sun · Caleb Ellington · Eric Xing · Le Song -
2021 Poster: Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families »
Goutham Rajendran · Bohdan Kivva · Ming Gao · Bryon Aragam -
2021 Poster: When Is Generalizable Reinforcement Learning Tractable? »
Dhruv Malik · Yuanzhi Li · Pradeep Ravikumar -
2021 Poster: Efficient Bayesian network structure learning via local Markov boundary search »
Ming Gao · Bryon Aragam -
2021 Poster: Off-Policy Risk Assessment in Contextual Bandits »
Audrey Huang · Liu Leqi · Zachary Lipton · Kamyar Azizzadenesheli -
2021 Poster: Rebounding Bandits for Modeling Satiation Effects »
Liu Leqi · Fatma Kilinc Karzan · Zachary Lipton · Alan Montgomery -
2020 : Panel Discussion & Closing »
Yejin Choi · Alexei Efros · Chelsea Finn · Kristen Grauman · Quoc V Le · Yann LeCun · Ruslan Salakhutdinov · Eric Xing -
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 Poster: On Learning Ising Models under Huber's Contamination Model »
Adarsh Prasad · Vishwak Srinivasan · Sivaraman Balakrishnan · Pradeep Ravikumar -
2020 Poster: Regularizing Black-box Models for Improved Interpretability »
Gregory Plumb · Maruan Al-Shedivat · Ángel Alexander Cabrera · Adam Perer · Eric Xing · Ameet Talwalkar -
2020 Poster: AutoSync: Learning to Synchronize for Data-Parallel Distributed Deep Learning »
Hao Zhang · Yuan Li · Zhijie Deng · Xiaodan Liang · Lawrence Carin · Eric Xing -
2020 Poster: A polynomial-time algorithm for learning nonparametric causal graphs »
Ming Gao · Yi Ding · Bryon Aragam -
2020 Poster: Improving GAN Training with Probability Ratio Clipping and Sample Reweighting »
Yue Wu · Pan Zhou · Andrew Wilson · Eric Xing · Zhiting Hu -
2020 : Rebounding bandits for modeling satiation effects »
Liu Leqi -
2020 Poster: On Completeness-aware Concept-Based Explanations in Deep Neural Networks »
Chih-Kuan Yeh · Been Kim · Sercan Arik · Chun-Liang Li · Tomas Pfister · Pradeep Ravikumar -
2020 Poster: Generalized Boosting »
Arun Suggala · Bingbin Liu · Pradeep Ravikumar -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 Workshop: Learning with Rich Experience: Integration of Learning Paradigms »
Zhiting Hu · Andrew Wilson · Chelsea Finn · Lisa Lee · Taylor Berg-Kirkpatrick · Ruslan Salakhutdinov · Eric Xing -
2019 Poster: On the (In)fidelity and Sensitivity of Explanations »
Chih-Kuan Yeh · Cheng-Yu Hsieh · Arun Suggala · David Inouye · Pradeep Ravikumar -
2019 Poster: On Human-Aligned Risk Minimization »
Liu Leqi · Adarsh Prasad · Pradeep Ravikumar -
2019 Poster: Learning Robust Global Representations by Penalizing Local Predictive Power »
Haohan Wang · Songwei Ge · Zachary Lipton · Eric Xing -
2019 Poster: Learning Data Manipulation for Augmentation and Weighting »
Zhiting Hu · Bowen Tan · Russ Salakhutdinov · Tom Mitchell · Eric Xing -
2019 Poster: Learning Sample-Specific Models with Low-Rank Personalized Regression »
Ben Lengerich · Bryon Aragam · Eric Xing -
2019 Poster: Optimal Analysis of Subset-Selection Based L_p Low-Rank Approximation »
Chen Dan · Hong Wang · Hongyang Zhang · Yuchen Zhou · Pradeep Ravikumar -
2019 Poster: Globally optimal score-based learning of directed acyclic graphs in high-dimensions »
Bryon Aragam · Arash Amini · Qing Zhou -
2019 Poster: Game Design for Eliciting Distinguishable Behavior »
Fan Yang · Liu Leqi · Yifan Wu · Zachary Lipton · Pradeep Ravikumar · Tom M Mitchell · William Cohen -
2018 Poster: Symbolic Graph Reasoning Meets Convolutions »
Xiaodan Liang · Zhiting Hu · Hao Zhang · Liang Lin · Eric Xing -
2018 Poster: Connecting Optimization and Regularization Paths »
Arun Suggala · Adarsh Prasad · Pradeep Ravikumar -
2018 Poster: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Spotlight: DAGs with NO TEARS: Continuous Optimization for Structure Learning »
Xun Zheng · Bryon Aragam · Pradeep Ravikumar · Eric Xing -
2018 Poster: Learning Pipelines with Limited Data and Domain Knowledge: A Study in Parsing Physics Problems »
Mrinmaya Sachan · Kumar Avinava Dubey · Tom Mitchell · Dan Roth · Eric Xing -
2018 Poster: Deep Generative Models with Learnable Knowledge Constraints »
Zhiting Hu · Zichao Yang · Russ Salakhutdinov · LIANHUI Qin · Xiaodan Liang · Haoye Dong · Eric Xing -
2018 Poster: MixLasso: Generalized Mixed Regression via Convex Atomic-Norm Regularization »
Ian En-Hsu Yen · Wei-Cheng Lee · Kai Zhong · Sung-En Chang · Pradeep Ravikumar · Shou-De Lin -
2018 Poster: Hybrid Retrieval-Generation Reinforced Agent for Medical Image Report Generation »
Yuan Li · Xiaodan Liang · Zhiting Hu · Eric Xing -
2018 Poster: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Spotlight: Neural Architecture Search with Bayesian Optimisation and Optimal Transport »
Kirthevasan Kandasamy · Willie Neiswanger · Jeff Schneider · Barnabas Poczos · Eric Xing -
2018 Poster: Unsupervised Text Style Transfer using Language Models as Discriminators »
Zichao Yang · Zhiting Hu · Chris Dyer · Eric Xing · Taylor Berg-Kirkpatrick -
2018 Poster: Representer Point Selection for Explaining Deep Neural Networks »
Chih-Kuan Yeh · Joon Kim · Ian En-Hsu Yen · Pradeep Ravikumar -
2017 : Pradeep Ravikumar (CMU) on A Parallel Primal-Dual Sparse Method for Extreme Classification »
Pradeep Ravikumar -
2017 Poster: Structured Generative Adversarial Networks »
Zhijie Deng · Hao Zhang · Xiaodan Liang · Luona Yang · Shizhen Xu · Jun Zhu · Eric Xing -
2017 Poster: The Expxorcist: Nonparametric Graphical Models Via Conditional Exponential Densities »
Arun Suggala · Mladen Kolar · Pradeep Ravikumar -
2017 Poster: On Separability of Loss Functions, and Revisiting Discriminative Vs Generative Models »
Adarsh Prasad · Alexandru Niculescu-Mizil · Pradeep Ravikumar -
2017 Spotlight: On Separability of Loss Functions, and Revisiting Discriminative Vs Generative Models »
Adarsh Prasad · Alexandru Niculescu-Mizil · Pradeep Ravikumar -
2016 : Eric Xing »
Eric Xing -
2016 Poster: Variance Reduction in Stochastic Gradient Langevin Dynamics »
Kumar Avinava Dubey · Sashank J. Reddi · Sinead Williamson · Barnabas Poczos · Alexander Smola · Eric Xing -
2016 Poster: Learning HMMs with Nonparametric Emissions via Spectral Decompositions of Continuous Matrices »
Kirthevasan Kandasamy · Maruan Al-Shedivat · Eric Xing -
2016 Poster: Dual Decomposed Learning with Factorwise Oracle for Structural SVM of Large Output Domain »
Ian En-Hsu Yen · Xiangru Huang · Kai Zhong · Ruohan Zhang · Pradeep Ravikumar · Inderjit Dhillon -
2016 Poster: Stochastic Variational Deep Kernel Learning »
Andrew Wilson · Zhiting Hu · Russ Salakhutdinov · Eric Xing -
2015 Workshop: Nonparametric Methods for Large Scale Representation Learning »
Andrew G Wilson · Alexander Smola · Eric Xing -
2015 Poster: Fast Classification Rates for High-dimensional Gaussian Generative Models »
Tianyang Li · Adarsh Prasad · Pradeep Ravikumar -
2015 Poster: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Spotlight: Collaborative Filtering with Graph Information: Consistency and Scalable Methods »
Nikhil Rao · Hsiang-Fu Yu · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Beyond Sub-Gaussian Measurements: High-Dimensional Structured Estimation with Sub-Exponential Designs »
Vidyashankar Sivakumar · Arindam Banerjee · Pradeep Ravikumar -
2015 Poster: Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent »
Ian En-Hsu Yen · Kai Zhong · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Fixed-Length Poisson MRF: Adding Dependencies to the Multinomial »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: Consistent Multilabel Classification »
Oluwasanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2015 Poster: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2015 Poster: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Spotlight: Closed-form Estimators for High-dimensional Generalized Linear Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2015 Spotlight: The Human Kernel »
Andrew Wilson · Christoph Dann · Chris Lucas · Eric Xing -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Workshop: Modern Machine Learning and Natural Language Processing »
Ankur P Parikh · Avneesh Saluja · Chris Dyer · Eric Xing -
2014 Poster: On Model Parallelization and Scheduling Strategies for Distributed Machine Learning »
Seunghak Lee · Jin Kyu Kim · Xun Zheng · Qirong Ho · Garth Gibson · Eric Xing -
2014 Poster: QUIC & DIRTY: A Quadratic Approximation Approach for Dirty Statistical Models »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Stephen Becker · Peder A Olsen -
2014 Poster: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: On the Information Theoretic Limits of Learning Ising Models »
Rashish Tandon · Karthikeyan Shanmugam · Pradeep Ravikumar · Alex Dimakis -
2014 Poster: Sparse Random Feature Algorithm as Coordinate Descent in Hilbert Space »
Ian En-Hsu Yen · Ting-Wei Lin · Shou-De Lin · Pradeep Ravikumar · Inderjit Dhillon -
2014 Spotlight: Consistent Binary Classification with Generalized Performance Metrics »
Sanmi Koyejo · Nagarajan Natarajan · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators »
Kai Zhong · Ian En-Hsu Yen · Inderjit Dhillon · Pradeep Ravikumar -
2014 Poster: A Representation Theory for Ranking Functions »
Harsh H Pareek · Pradeep Ravikumar -
2014 Poster: Capturing Semantically Meaningful Word Dependencies with an Admixture of Poisson MRFs »
David I Inouye · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Constant Nullspace Strong Convexity and Fast Convergence of Proximal Methods under High-Dimensional Settings »
Ian En-Hsu Yen · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2014 Poster: Dependent nonparametric trees for dynamic hierarchical clustering »
Kumar Avinava Dubey · Qirong Ho · Sinead Williamson · Eric Xing -
2014 Poster: Elementary Estimators for Graphical Models »
Eunho Yang · Aurelie Lozano · Pradeep Ravikumar -
2013 Workshop: Discrete Optimization in Machine Learning: Connecting Theory and Practice »
Stefanie Jegelka · Andreas Krause · Pradeep Ravikumar · Kazuo Murota · Jeffrey A Bilmes · Yisong Yue · Michael Jordan -
2013 Poster: Conditional Random Fields via Univariate Exponential Families »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: On Poisson Graphical Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · Zhandong Liu -
2013 Poster: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Oral: BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar · Russell Poldrack -
2013 Poster: Dirty Statistical Models »
Eunho Yang · Pradeep Ravikumar -
2013 Poster: More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server »
Qirong Ho · James Cipar · Henggang Cui · Seunghak Lee · Jin Kyu Kim · Phillip B. Gibbons · Garth Gibson · Greg Ganger · Eric Xing -
2013 Oral: More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server »
Qirong Ho · James Cipar · Henggang Cui · Seunghak Lee · Jin Kyu Kim · Phillip B. Gibbons · Garth Gibson · Greg Ganger · Eric Xing -
2013 Poster: Variance Reduction for Stochastic Gradient Optimization »
Chong Wang · Xi Chen · Alexander Smola · Eric Xing -
2013 Poster: Large Scale Distributed Sparse Precision Estimation »
Huahua Wang · Arindam Banerjee · Cho-Jui Hsieh · Pradeep Ravikumar · Inderjit Dhillon -
2013 Poster: Learning with Noisy Labels »
Nagarajan Natarajan · Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2013 Poster: Restricting exchangeable nonparametric distributions »
Sinead Williamson · Steven MacEachern · Eric Xing -
2013 Spotlight: Restricting exchangeable nonparametric distributions »
Sinead Williamson · Steven MacEachern · Eric Xing -
2013 Poster: A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks »
Junming Yin · Qirong Ho · Eric Xing -
2012 Workshop: Spectral Algorithms for Latent Variable Models »
Ankur P Parikh · Le Song · Eric Xing -
2012 Workshop: Discrete Optimization in Machine Learning (DISCML): Structure and Scalability »
Stefanie Jegelka · Andreas Krause · Jeffrey A Bilmes · Pradeep Ravikumar -
2012 Poster: Monte Carlo Methods for Maximum Margin Supervised Topic Models »
Qixia Jiang · Jun Zhu · Maosong Sun · Eric Xing -
2012 Poster: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Poster: On Triangular versus Edge Representations --- Towards Scalable Modeling of Networks »
Qirong Ho · Junming Yin · Eric Xing -
2012 Poster: Symmetric Correspondence Topic Models for Multilingual Text Analysis »
Kosuke Fukumasu · Koji Eguchi · Eric Xing -
2012 Spotlight: Symmetric Correspondence Topic Models for Multilingual Text Analysis »
Kosuke Fukumasu · Koji Eguchi · Eric Xing -
2012 Oral: Graphical Models via Generalized Linear Models »
Eunho Yang · Pradeep Ravikumar · Genevera I Allen · zhandong Liu -
2012 Poster: A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation »
Cho-Jui Hsieh · Inderjit Dhillon · Pradeep Ravikumar · Arindam Banerjee -
2011 Workshop: Discrete Optimization in Machine Learning (DISCML): Uncertainty, Generalization and Feedback »
Andreas Krause · Pradeep Ravikumar · Stefanie S Jegelka · Jeffrey A Bilmes -
2011 Poster: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Spotlight: On Learning Discrete Graphical Models using Greedy Methods »
Ali Jalali · Christopher C Johnson · Pradeep Ravikumar -
2011 Poster: Greedy Algorithms for Structurally Constrained High Dimensional Problems »
Ambuj Tewari · Pradeep Ravikumar · Inderjit Dhillon -
2011 Poster: Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation »
Cho-Jui Hsieh · Matyas A Sustik · Inderjit Dhillon · Pradeep Ravikumar -
2011 Session: Oral Session 5 »
Pradeep Ravikumar -
2011 Poster: Infinite Latent SVM for Classification and Multi-task Learning »
Jun Zhu · Ning Chen · Eric Xing -
2011 Poster: Kernel Embeddings of Latent Tree Graphical Models »
Le Song · Ankur P Parikh · Eric Xing -
2011 Poster: Large-Scale Category Structure Aware Image Categorization »
Bin Zhao · Li Fei-Fei · Eric Xing -
2011 Poster: Nearest Neighbor based Greedy Coordinate Descent »
Inderjit Dhillon · Pradeep Ravikumar · Ambuj Tewari -
2010 Workshop: Discrete Optimization in Machine Learning: Structures, Algorithms and Applications »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes · Stefanie Jegelka -
2010 Workshop: Robust Statistical Learning »
Pradeep Ravikumar · Constantine Caramanis · Sujay Sanghavi -
2010 Session: Oral Session 14 »
Pradeep Ravikumar -
2010 Poster: Large Margin Learning of Upstream Scene Understanding Models »
Jun Zhu · Li-Jia Li · Li Fei-Fei · Eric Xing -
2010 Oral: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: Predictive Subspace Learning for Multi-view Data: a Large Margin Approach »
Ning Chen · Jun Zhu · Eric Xing -
2010 Poster: A Dirty Model for Multi-task Learning »
Ali Jalali · Pradeep Ravikumar · Sujay Sanghavi · Chao Ruan -
2010 Poster: Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification »
Li-Jia Li · Hao Su · Eric Xing · Li Fei-Fei -
2010 Poster: Adaptive Multi-Task Lasso: with Application to eQTL Detection »
Seunghak Lee · Jun Zhu · Eric Xing -
2009 Workshop: Discrete Optimization in Machine Learning: Submodularity, Polyhedra and Sparsity »
Andreas Krause · Pradeep Ravikumar · Jeffrey A Bilmes -
2009 Poster: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Poster: Heterogeneous multitask learning with joint sparsity constraints »
Xiaolin Yang · Seyoung Kim · Eric Xing -
2009 Spotlight: Information-theoretic lower bounds on the oracle complexity of convex optimization »
Alekh Agarwal · Peter Bartlett · Pradeep Ravikumar · Martin J Wainwright -
2009 Poster: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Poster: A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers »
Sahand N Negahban · Pradeep Ravikumar · Martin J Wainwright · Bin Yu -
2009 Spotlight: Time-Varying Dynamic Bayesian Networks »
Le Song · Mladen Kolar · Eric Xing -
2009 Oral: A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers »
Sahand N Negahban · Pradeep Ravikumar · Martin J Wainwright · Bin Yu -
2009 Poster: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2009 Spotlight: Sparsistent Learning of Varying-coefficient Models with Structural Changes »
Mladen Kolar · Le Song · Eric Xing -
2008 Workshop: Analyzing Graphs: Theory and Applications »
Edo M Airoldi · David Blei · Jake M Hofman · Tony Jebara · Eric Xing -
2008 Poster: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Poster: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Spotlight: Mixed Membership Stochastic Blockmodels »
Edo M Airoldi · David Blei · Stephen E Fienberg · Eric Xing -
2008 Spotlight: Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images »
Pradeep Ravikumar · Vincent Vu · Bin Yu · Thomas Naselaris · Kendrick Kay · Jack Gallant -
2008 Poster: Partially Observed Maximum Entropy Discrimination Markov Networks »
Jun Zhu · Eric Xing · Bo Zhang -
2008 Poster: Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of \ell_1-regularizedMLE »
Pradeep Ravikumar · Garvesh Raskutti · Martin J Wainwright · Bin Yu -
2007 Workshop: Statistical Network Models »
Kevin Murphy · Lise Getoor · Eric Xing · Raphael Gottardo -
2007 Poster: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Spotlight: SpAM: Sparse Additive Models »
Pradeep Ravikumar · Han Liu · John Lafferty · Larry Wasserman -
2007 Poster: HM-BiTAM: Bilingual Topic Exploration, Word Alignment, and Translation »
Bing Zhao · Eric Xing -
2006 Poster: A Hidden Markov Dirichlet Process Model for Genetic Recombination in Open Ancestral Space »
KyungAh Sohn · Eric Xing -
2006 Talk: A Hidden Markov Dirichlet Process Model for Genetic Recombination in Open Ancestral Space »
KyungAh Sohn · Eric Xing -
2006 Poster: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty -
2006 Spotlight: Inferring Graphical Model Structure using $\ell_1$-Regularized Pseudo-Likelihood »
Martin J Wainwright · Pradeep Ravikumar · John Lafferty