Timezone: »
The backpropagation of error algorithm (BP) is impossible to implement in a real brain. The recent success of deep networks in machine learning and AI, however, has inspired proposals for understanding how the brain might learn across multiple layers, and hence how it might approximate BP. As of yet, none of these proposals have been rigorously evaluated on tasks where BP-guided deep learning has proved critical, or in architectures more structured than simple fully-connected networks. Here we present results on scaling up biologically motivated models of deep learning on datasets which need deep networks with appropriate architectures to achieve good performance. We present results on the MNIST, CIFAR-10, and ImageNet datasets and explore variants of target-propagation (TP) and feedback alignment (FA) algorithms, and explore performance in both fully- and locally-connected architectures. We also introduce weight-transport-free variants of difference target propagation (DTP) modified to remove backpropagation from the penultimate layer. Many of these algorithms perform well for MNIST, but for CIFAR and ImageNet we find that TP and FA variants perform significantly worse than BP, especially for networks composed of locally connected units, opening questions about whether new architectures and algorithms are required to scale these approaches. Our results and implementation details help establish baselines for biologically motivated deep learning schemes going forward.
Author Information
Sergey Bartunov (DeepMind)
Adam Santoro (DeepMind)
Blake Richards (University of Toronto)
Luke Marris (DeepMind)
Geoffrey E Hinton (Google & University of Toronto)
Geoffrey Hinton received his PhD in Artificial Intelligence from Edinburgh in 1978 and spent five years as a faculty member at Carnegie-Mellon where he pioneered back-propagation, Boltzmann machines and distributed representations of words. In 1987 he became a fellow of the Canadian Institute for Advanced Research and moved to the University of Toronto. In 1998 he founded the Gatsby Computational Neuroscience Unit at University College London, returning to the University of Toronto in 2001. His group at the University of Toronto then used deep learning to change the way speech recognition and object recognition are done. He currently splits his time between the University of Toronto and Google. In 2010 he received the NSERC Herzberg Gold Medal, Canada's top award in Science and Engineering.
Timothy Lillicrap (Google DeepMind)
More from the Same Authors
-
2020 : Session A, Poster 31: Continuous Latent Search For Combinatorial Optimization »
Sergey Bartunov -
2021 Spotlight: The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning »
Shahab Bakhtiari · Patrick Mineault · Timothy Lillicrap · Christopher Pack · Blake Richards -
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2022 : Evaluating Long-Term Memory in 3D Mazes »
Jurgis Pašukonis · Timothy Lillicrap · Danijar Hafner -
2022 Poster: Turbocharging Solution Concepts: Solving NEs, CEs and CCEs with Neural Equilibrium Solvers »
Luke Marris · Ian Gemp · Thomas Anthony · Andrea Tacchetti · Siqi Liu · Karl Tuyls -
2022 Poster: Large-Scale Retrieval for Reinforcement Learning »
Peter Humphreys · Arthur Guez · Olivier Tieleman · Laurent Sifre · Theophane Weber · Timothy Lillicrap -
2022 Invited Talk: The Forward-Forward Algorithm for Training Deep Neural Networks »
Geoffrey Hinton -
2022 Poster: Intra-agent speech permits zero-shot task acquisition »
Chen Yan · Federico Carnevale · Petko I Georgiev · Adam Santoro · Aurelia Guy · Alistair Muldal · Chia-Chun Hung · Joshua Abramson · Timothy Lillicrap · Gregory Wayne -
2022 Poster: Data Distributional Properties Drive Emergent In-Context Learning in Transformers »
Stephanie Chan · Adam Santoro · Andrew Lampinen · Jane Wang · Aaditya Singh · Pierre Richemond · James McClelland · Felix Hill -
2022 Poster: On the Stability and Scalability of Node Perturbation Learning »
Naoki Hiratani · Yash Mehta · Timothy Lillicrap · Peter E Latham -
2022 Poster: A Unified Sequence Interface for Vision Tasks »
Ting Chen · Saurabh Saxena · Lala Li · Tsung-Yi Lin · David Fleet · Geoffrey Hinton -
2021 Poster: The functional specialization of visual cortex emerges from training parallel pathways with self-supervised predictive learning »
Shahab Bakhtiari · Patrick Mineault · Timothy Lillicrap · Christopher Pack · Blake Richards -
2021 Poster: Attention over Learned Object Embeddings Enables Complex Visual Reasoning »
David Ding · Felix Hill · Adam Santoro · Malcolm Reynolds · Matt Botvinick -
2021 Poster: Canonical Capsules: Self-Supervised Capsules in Canonical Pose »
Weiwei Sun · Andrea Tagliasacchi · Boyang Deng · Sara Sabour · Soroosh Yazdani · Geoffrey Hinton · Kwang Moo Yi -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 Poster: Towards Biologically Plausible Convolutional Networks »
Roman Pogodin · Yash Mehta · Timothy Lillicrap · Peter E Latham -
2021 Poster: Computer-Aided Design as Language »
Yaroslav Ganin · Sergey Bartunov · Yujia Li · Ethan Keller · Stefano Saliceti -
2021 Oral: Attention over Learned Object Embeddings Enables Complex Visual Reasoning »
David Ding · Felix Hill · Adam Santoro · Malcolm Reynolds · Matt Botvinick -
2020 : Poster Session A: 3:00 AM - 4:30 AM PST »
Taras Khakhulin · Ravichandra Addanki · Jinhwi Lee · Jungtaek Kim · Piotr Januszewski · Konrad Czechowski · Francesco Landolfi · Lovro Vrček · Oren Neumann · Claudius Gros · Betty Fabre · Lukas Faber · Lucas Anquetil · Alberto Franzin · Tommaso Bendinelli · Sergey Bartunov -
2020 Poster: A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network »
Basile Confavreux · Friedemann Zenke · Everton Agnes · Timothy Lillicrap · Tim Vogels -
2020 Spotlight: A meta-learning approach to (re)discover plasticity rules that carve a desired function into a neural network »
Basile Confavreux · Friedemann Zenke · Everton Agnes · Timothy Lillicrap · Tim Vogels -
2020 Poster: Big Self-Supervised Models are Strong Semi-Supervised Learners »
Ting Chen · Simon Kornblith · Kevin Swersky · Mohammad Norouzi · Geoffrey E Hinton -
2020 Poster: Training Generative Adversarial Networks by Solving Ordinary Differential Equations »
Chongli Qin · Yan Wu · Jost Tobias Springenberg · Andy Brock · Jeff Donahue · Timothy Lillicrap · Pushmeet Kohli -
2020 Spotlight: Training Generative Adversarial Networks by Solving Ordinary Differential Equations »
Chongli Qin · Yan Wu · Jost Tobias Springenberg · Andy Brock · Jeff Donahue · Timothy Lillicrap · Pushmeet Kohli -
2019 : Panel Session: A new hope for neuroscience »
Yoshua Bengio · Blake Richards · Timothy Lillicrap · Ila Fiete · David Sussillo · Doina Precup · Konrad Kording · Surya Ganguli -
2019 : Invited Talk: Sensory prediction error signals in the neocortex »
Blake Richards -
2019 : Invited Talk: Deep learning without weight transport »
Timothy Lillicrap -
2019 : Panel Discussion »
Linda Smith · Josh Tenenbaum · Lisa Anne Hendricks · James McClelland · Timothy Lillicrap · Jesse Thomason · Jason Baldridge · Louis-Philippe Morency -
2019 : Panel Discussion led by Grace Lindsay »
Grace Lindsay · Blake Richards · Doina Precup · Jacqueline Gottlieb · Jeff Clune · Jane Wang · Richard Sutton · Angela Yu · Ida Momennejad -
2019 : Timothy Lillicrap »
Timothy Lillicrap -
2019 : Opening Remarks »
Raymond Chua · Feryal Behbahani · Sara Zannone · Rui Ponte Costa · Claudia Clopath · Doina Precup · Blake Richards -
2019 Workshop: Biological and Artificial Reinforcement Learning »
Raymond Chua · Sara Zannone · Feryal Behbahani · Rui Ponte Costa · Claudia Clopath · Blake Richards · Doina Precup -
2019 Poster: Lookahead Optimizer: k steps forward, 1 step back »
Michael Zhang · James Lucas · Jimmy Ba · Geoffrey E Hinton -
2019 Poster: Stacked Capsule Autoencoders »
Adam Kosiorek · Sara Sabour · Yee Whye Teh · Geoffrey E Hinton -
2019 Poster: When does label smoothing help? »
Rafael Müller · Simon Kornblith · Geoffrey E Hinton -
2019 Spotlight: When does label smoothing help? »
Rafael Müller · Simon Kornblith · Geoffrey E Hinton -
2019 Poster: Experience Replay for Continual Learning »
David Rolnick · Arun Ahuja · Jonathan Richard Schwarz · Timothy Lillicrap · Gregory Wayne -
2019 Poster: Deep Learning without Weight Transport »
Mohamed Akrout · Collin Wilson · Peter Humphreys · Timothy Lillicrap · Douglas Tweed -
2018 : Invited Talk 2 »
Timothy Lillicrap -
2018 Poster: Learning Attractor Dynamics for Generative Memory »
Yan Wu · Gregory Wayne · Karol Gregor · Timothy Lillicrap -
2018 Poster: Relational recurrent neural networks »
Adam Santoro · Ryan Faulkner · David Raposo · Jack Rae · Mike Chrzanowski · Theophane Weber · Daan Wierstra · Oriol Vinyals · Razvan Pascanu · Timothy Lillicrap -
2017 : Scalable RL and AlphaGo »
Timothy Lillicrap -
2017 : Panel on "What neural systems can teach us about building better machine learning systems" »
Timothy Lillicrap · James J DiCarlo · Christopher Rozell · Viren Jain · Nathan Kutz · William Gray Roncal · Bingni Brunton -
2017 : Backpropagation and deep learning in the brain »
Timothy Lillicrap -
2017 Poster: A simple neural network module for relational reasoning »
Adam Santoro · David Raposo · David Barrett · Mateusz Malinowski · Razvan Pascanu · Peter Battaglia · Timothy Lillicrap -
2017 Spotlight: A simple neural network module for relational reasoning »
Adam Santoro · David Raposo · David Barrett · Mateusz Malinowski · Razvan Pascanu · Peter Battaglia · Timothy Lillicrap -
2017 Poster: Dynamic Routing Between Capsules »
Sara Sabour · Nicholas Frosst · Geoffrey E Hinton -
2017 Spotlight: Dynamic Routing Between Capsules »
Sara Sabour · Nicholas Frosst · Geoffrey E Hinton -
2017 Poster: Interpolated Policy Gradient: Merging On-Policy and Off-Policy Gradient Estimation for Deep Reinforcement Learning »
Shixiang (Shane) Gu · Timothy Lillicrap · Richard Turner · Zoubin Ghahramani · Bernhard Schölkopf · Sergey Levine -
2016 : Tim Lillicrap »
Timothy Lillicrap -
2016 Poster: Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes »
Jack Rae · Jonathan J Hunt · Ivo Danihelka · Tim Harley · Andrew Senior · Gregory Wayne · Alex Graves · Timothy Lillicrap -
2016 Poster: Attend, Infer, Repeat: Fast Scene Understanding with Generative Models »
S. M. Ali Eslami · Nicolas Heess · Theophane Weber · Yuval Tassa · David Szepesvari · koray kavukcuoglu · Geoffrey E Hinton -
2016 Poster: Using Fast Weights to Attend to the Recent Past »
Jimmy Ba · Geoffrey E Hinton · Volodymyr Mnih · Joel Leibo · Catalin Ionescu -
2016 Oral: Using Fast Weights to Attend to the Recent Past »
Jimmy Ba · Geoffrey E Hinton · Volodymyr Mnih · Joel Leibo · Catalin Ionescu -
2016 Poster: Matching Networks for One Shot Learning »
Oriol Vinyals · Charles Blundell · Timothy Lillicrap · koray kavukcuoglu · Daan Wierstra -
2015 Poster: Learning Continuous Control Policies by Stochastic Value Gradients »
Nicolas Heess · Gregory Wayne · David Silver · Timothy Lillicrap · Tom Erez · Yuval Tassa -
2015 Poster: Grammar as a Foreign Language »
Oriol Vinyals · Łukasz Kaiser · Terry Koo · Slav Petrov · Ilya Sutskever · Geoffrey Hinton -
2015 Tutorial: Deep Learning »
Geoffrey E Hinton · Yoshua Bengio · Yann LeCun -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz -
2012 Poster: ImageNet Classification with Deep Convolutional Neural Networks »
Alex Krizhevsky · Ilya Sutskever · Geoffrey E Hinton -
2012 Invited Talk: Dropout: A simple and effective way to improve neural networks »
Geoffrey E Hinton · George Dahl -
2012 Poster: A Better Way to Pre-Train Deep Boltzmann Machines »
Russ Salakhutdinov · Geoffrey E Hinton -
2012 Spotlight: ImageNet Classification with Deep Convolutional Neural Networks »
Alex Krizhevsky · Ilya Sutskever · Geoffrey E Hinton -
2010 Workshop: Deep Learning and Unsupervised Feature Learning »
Honglak Lee · Marc'Aurelio Ranzato · Yoshua Bengio · Geoffrey E Hinton · Yann LeCun · Andrew Y Ng -
2010 Talk: A Probabilistic Approach to Data Visualization »
Geoffrey E Hinton -
2010 Oral: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2010 Poster: Learning to combine foveal glimpses with a third-order Boltzmann machine »
Hugo Larochelle · Geoffrey E Hinton -
2010 Poster: Generating more realistic images using gated MRF's »
Marc'Aurelio Ranzato · Volodymyr Mnih · Geoffrey E Hinton -
2010 Poster: Phone Recognition with the Mean-Covariance Restricted Boltzmann Machine »
George Dahl · Marc'Aurelio Ranzato · Abdel-rahman Mohamed · Geoffrey E Hinton -
2010 Poster: Gated Softmax Classification »
Roland Memisevic · Christopher Zach · Geoffrey E Hinton · Marc Pollefeys -
2009 Workshop: Deep Learning for Speech Recognition and Related Applications »
Li Deng · Dong Yu · Geoffrey E Hinton -
2009 Poster: Replicated Softmax: an Undirected Topic Model »
Russ Salakhutdinov · Geoffrey E Hinton -
2009 Poster: 3D Object Recognition with Deep Belief Nets »
Vinod Nair · Geoffrey E Hinton -
2009 Spotlight: 3D Object Recognition with Deep Belief Nets »
Vinod Nair · Geoffrey E Hinton -
2009 Invited Talk: Deep Learning with Multiplicative Interactions »
Geoffrey E Hinton -
2009 Poster: Zero-shot Learning with Semantic Output Codes »
Mark M Palatucci · Dean Pomerleau · Geoffrey E Hinton · Tom Mitchell -
2008 Poster: Using matrices to model symbolic relationship »
Ilya Sutskever · Geoffrey E Hinton -
2008 Demonstration: Visualizing NIPS Cooperations using Multiple Maps t-SNE »
Laurens van der Maaten · Geoffrey E Hinton -
2008 Spotlight: Using matrices to model symbolic relationship »
Ilya Sutskever · Geoffrey E Hinton -
2008 Poster: The Recurrent Temporal Restricted Boltzmann Machine »
Ilya Sutskever · Geoffrey E Hinton · Graham Taylor -
2008 Poster: A Scalable Hierarchical Distributed Language Model »
Andriy Mnih · Geoffrey E Hinton -
2008 Poster: Implicit Mixtures of Restricted Boltzmann Machines »
Vinod Nair · Geoffrey E Hinton -
2008 Poster: Competing RBM density models for classification of fMRI images »
Tanya Schmah · Geoffrey E Hinton · Richard Zemel -
2007 Tutorial: Deep Belief Nets »
Geoffrey E Hinton -
2007 Poster: Using Deep Belief Nets to Learn Covariance Kernels for Gaussian Processes »
Russ Salakhutdinov · Geoffrey E Hinton -
2007 Poster: Modeling image patches with a directed hierarchy of Markov random fields »
Simon Osindero · Geoffrey E Hinton -
2006 Poster: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis -
2006 Spotlight: Modeling Human Motion Using Binary Latent Variables »
Graham Taylor · Geoffrey E Hinton · Sam T Roweis